ベース抵抗を低減したSOIラテラルBJT
スポンサーリンク
概要
- 論文の詳細を見る
ベース抵抗を低減するための新たな外部ベース構造を持つSOIラテラルBJTを試作した。内部ベースの直上に単結晶シリコンのまま垂直方向に引き出した外部ベース領域を設け, 外部ベース表面にはメタルを貼り付けた。これにより長いエミッタ長においても低いベース抵抗が維持可能となった。メタル貼り付けによるベース低減効果は張り付け無しの場合の約1 / 10であり、これによりfmaxが約3倍増大した。SOIラテラル構造特有の低寄生容量性と、今回の低ベース抵抗効果とにより、寄生成分を大幅に低減した素子が可能となり、7.4GHzのfTながら、62GHzの高いfmaxが実現できた。
- 社団法人電子情報通信学会の論文
- 2000-03-13
著者
-
石内 秀美
(株)東芝セミコンダクター社SoC研究開発センター
-
勝又 康弘
(株)東芝 セミコンダクター社 システムLSI開発センター
-
布施 常明
(株)東芝 ULSI研究所
-
渡辺 重佳
(株)東芝技術企画室
-
松永 準一
(株)東芝 研究開発センター ULSI研究所
-
篠 智彰
(株)東芝マイクロエレクトロニクス研究所
-
渡辺 重佳
(株)東芝 セミコンダクター社
-
南 良博
(株)東芝セミコンダクター社SoC研究開発センター
-
井納 和美
(株)東芝セミコンダクター社SoC研究開発センター
-
山田 敬
(株)東芝セミコンダクター社soc研究開発センター
-
川中 繁
株式会社東芝セミコンダクター社半導体研究開発センター
-
新居 英明
(株)東芝セミコンダクタ社システムlsi第一事業部システムlsiデバイス技術開発部
-
川中 繁
(株)東芝 セミコンダクター社 半導体研究開発センター
-
勝又 康弘
東芝セミコンダクター社
-
石内 秀美
東芝 セミコンダクター社 半導体研究開発センター
-
石内 秀美
(株)東芝
-
吉見 信
(株)東芝 セミコンダクター社 マイクロエレクトロニクス技術研究所
-
篠 智彰
(株)東芝セミコンダクター社半導体研究開発センター
-
吉見 信
SOITEC Asia
-
川中 繁
東芝 システムLSI開発センター
-
布施 常明
東芝セミコンダクター社
-
松永 準一
(株)東芝 セミコンダクター社 マイクロエレクトロニクス技術研究所
-
吉見 信
東芝 Soc研開セ
-
南 良博
(株)東芝セミコンダクター社半導体研究開発センター
-
渡辺 重佳
(株)東芝 Ulsi研究所
-
篠 智彰
(株)東芝セミコンダクター社soc研究開発センター
-
山田 敬
(株)東芝 研究開発センター 先端半導体デバイス研究所
-
篠 智彰
(株)東芝 研究開発センター 先端半導体デバイス研究所
関連論文
- 高速アナログ/ディジタル回路用高精度疑似飽和BJTモデル
- hp22 nm Node Low Operating Power(LOP)向けSub-10nmゲートCMOS技術(VLSI回路,デバイス技術(高速,低電圧,低電力))
- 14nmゲートCMOS技術 : poly-SiGe ゲート電極、及びNiSiを用いた低温プロセスによる性能向上
- 極薄膜NO Oxynitrideゲート絶縁膜とNi SALICIDEプロセスを用いた高性能35nmゲート長CMOS
- 1トランジスタ/1キャパシタ型及びGAINセル型Chain FRAMの設計法
- 高速不揮発性メモリChain FRAMの設計法
- 高速、高密度Chain FRAMの設計
- 大容量・高バンド幅DRAMを実現する電源ノイズ低減法
- 1GビットDRAM用トレンチ・セル技術
- 低消費電力DRAMを実現する1/4 Vccビット線振幅方式
- 超低スタンドバイ電流DRAMの検討
- 90nm node CMOSプロセスによる128Mb-FBC(Floating Body Cell)メモリの技術開発(新メモリ技術とシステムLSI)
- 90nmCMOSプロセスによる128Mb-FBC(Floating Body Cell)メモリの技術開発(先端CMOSデバイス・プロセス技術)
- SOI上の1Tゲインセル(FBC)を用いた128MビットDRAM(新メモリ技術, メモリ応用技術, 一般, ISSCC特集2 DRAM)
- SOI上の1Tゲインセル(FBC)を用いた128MビットDRAM
- シミュレーションを用いた微小MOSFETにおける寄生抵抗の解析および抽出方法の検討(プロセス・デバイス・回路シミュレーション及び一般)
- FinFETを用いたhp22nm node SRAMのロバストなデバイス設計(VLSI回路, デバイス技術(高速・低電圧・低消費電力))
- 90nmノード高性能部分空乏型SOI CMOSデバイス
- 高速、低消費電力、高信頼ULSIの設計手法
- セル面積 0.29μm^2 を実現したトレンチ型 DRAM セル技術
- Floating Body RAM技術開発及びその32nm nodeへ向けたScalability(新メモリ技術とシステムLSI)
- NAND型セルを用いた256Mb DRAM
- リソグラフィー優先設計の6F^2型DRAMセル
- SOI/Bulkハイブリッド基板を用いた高性能SoC実現のためのDRAM混載技術
- SON-MOSFETの作製とULSIへの応用
- ESS技術を用いたSON-MOSFETの作成
- ベース抵抗を低減したSOIラテラルBJT
- 自己整合外部ベース形成技術を用いた横型SOIバイポーラ素子
- 高速低消費電力SOI技術 (特集 先端半導体デバイス技術)
- 配線の信頼性を考慮したギガビットDRAMの設計法
- 基板電位オーバーバイアス方式を用いた0.5V動作サブ0.1um高速低消費電力技術
- 薄膜SOI素子におけるソース/ドレイン間リーク電流の解析
- LSIの消費電力を従来の1/100に低減できるSOI回路技術
- 基板電位制御SOI技術を用いた0.5V、200MHz動作32ビットALUの設計
- 基板電位制御SOI技術を用いた0.5V, 200MHz動作32ビットALUの設計
- 基板電位制御SOI技術を用いた0.5V, 200MHz動作32ビットALU
- SOI集積回路に対する基板浮遊効果の影響
- 3次元プロセスデバイスシミュレーションによるBulk-FinFETの駆動電流の改善(プロセス・デバイス・回路シミュレーション及び一般)
- バルクシリコン基板上に形成したゲート長20nm、フィン幅6nmの CMOS FinFET のプロセスインテグレーション技術とデバイス特性
- バルクシリコン基板上に形成したゲート長20nm、フィン幅6nmのCMOS FinFETのプロセスインテグレーション技術とデバイス特性(先端CMOSデバイス・プロセス技術)
- C-11-2 TIS を用いたバッファ回路の設計法とその DRAM への適用検討
- 周辺回路の歩留りを考慮したギガビットDRAMの最適冗長回路設計法
- hp22 nm Node Low Operating Power(LOP)向けSub-10nmゲートCMOS技術(VLSI回路,デバイス技術(高速,低電圧,低電力))
- 不純物偏析Schottkyソース/ドレインを用いた高性能FinFET(IEDM(先端CMOSデバイス・プロセス技術))
- 不純物偏析 Schottky ソース/ドレインを用いた高性能FinFET
- 3次元プロセスデバイスシミュレーションによるBulk-FinFETの駆動電流の改善(プロセス・デバイス・回路シミュレーション及び一般)
- hp32nmノード以降に向けた周辺回路がBulk Planar FET及びメモリセルがBulk-FinFETで構成されたSRAM技術について(VLSI回路,デバイス技術(高速,低電圧,低消費電力))
- hp32nmノード以降に向けた周辺回路がBulk Planar FET及びメモリセルがBulk-FinFETで構成されたSRAM技術について(VLSI回路,デバイス技術(高速,低電圧,低消費電力))
- FinFETを用いたhp22nm node SRAMのロバストなデバイス設計(VLSI回路, デバイス技術(高速・低電圧・低消費電力))
- SOI/Bulkハイブリッド基板を用いた高性能SoC実現のためのDRAM混載技術
- SON-MOSFETの作製とULSIへの応用
- 基板電位オーバーバイアス方式を用いた0.5V動作サブ0.1um高速低消費電力技術
- 基板電位オーバーバイアス方式を用いた0.5V動作サブ0.1um高速低消費電力技術
- 基板電位制御SOI技術を用いた0.5V, 200MHz動作32ビットALUの設計
- 基板電位制御SOI技術を用いた0.5V, 200MHz動作32ビットALUの設計
- Mixed Signal CMOS用HfSiONゲート絶縁膜の最適化(VLSI回路, デバイス技術(高速・低電圧・低消費電力))
- Mixed Signal CMOS用HfSiONゲート絶縁膜の最適化(VLSI回路, デバイス技術(高速・低電圧・低消費電力))
- HfSiONゲート絶縁膜のヒステリシスに寄与するトラップの解析(ゲート絶縁膜, 容量膜, 機能膜及びメモリ技術)
- HfSiON-CMOSFETの高性能・高信頼性に向けたHf濃度の指針(IEDM特集(先端CMOSデバイス・プロセス技術))
- 65nmノード世代に向けたHigh-kゲート絶縁膜(HfSiON)のCMOSFET設計(VLSI回路, デバイス技術(高速, 低電圧, 低電力))
- 65nmノード世代に向けたHigh-kゲート絶縁膜(HfSiON)のCMOSFET設計(VLSI回路, デバイス技術(高速, 低電圧, 低電力))
- 微細MOSFETのリーク電流を考慮したシステムLSIの高速低消費電力設計法の検討
- 微細MOSFETのゲートリーク電流の低消費電力用2電源方式に及ぼす影響に関する検討
- SOIを用いた0.5V動作CMOSロジックの設計法
- SOIを用いた0.5V動作CMOSロジックの設計法
- 1.5nm酸化膜MOSFET
- 1.5nm酸化膜 MOSFET
- 256Mb DRAMのためのNAND型セル技術
- 90nm世代におけるSoC向け高集積混載SRAM技術(MRAM,不揮発メモリ,メモリ,一般)
- マイクロ波Si系半導体素子・回路の技術動向及び今後の展望について
- CMOSにおけるプロセスダメージとアナログ特性の関係
- CMOSにおけるプロセスダメージとアナログ特性の関係
- CMOSにおけるプロセスダメージとアナログ特性の関係
- シミュレーションを用いた微小MOSFETにおける寄生抵抗の解析および抽出方法の検討(プロセス・デバイス・回路シミュレーション及び一般)
- アルゴンイオン注入のSOI-NMOSFET特性に対する影響
- チャネル長0.1μmSOI MOSFETにおけるself-heatingの影響考察
- 通信用LSIへのSOI技術の応用 : fmax 67GHz SOI 横型バイポーラトランジスタ技術
- 混載DRAMに適したSOI上の1トランジスタゲインセル(FBC)を使ったメモリ : セル特性及びメモリ性能の評価結果(VLSI回路, デバイス技術(高速, 低電圧, 低電力))
- SOI上に形成した混載DRAM用メモリセル : FBC(Floating Body Cell)(VLSI回路, デバイス技術(高速, 低電圧, 低電力))
- 混載DRAMに適したSOI上の1トランジスタゲインセル(FBC)を使ったメモリ : セル特性及びメモリ性能の評価結果(VLSI回路, デバイス技術(高速, 低電圧, 低電力))
- SOI上に形成した混載DRAM用メモリセル : FBC(Floating Body Cell)(VLSI回路, デバイス技術(高速, 低電圧, 低電力))
- 高密度NAND型DRAM技術
- 90nmノード高性能部分空乏型SOI CMOSデバイス
- 2. 各分野における技術の変遷 : 2-1 半導体メモリ技術の変遷と将来の展望(あの技術は今… : 技術の変遷と21世紀への展望)
- マルチVt SOI CMOS技術を用いた低電力LSI向け0.5V電源スキーム
- マルチVt SOI CMOS技術を用いた低電力LSI向け0.5V電源スキーム
- 低消費電力型BiCMOS用シャロウトレンチ最適化の検討
- TIS(Trench-Isolated-transistor using Side wall gate)を用いたバッファ回路の新設計法とその大容量DRAMへの適用検討
- トレンチキャパシタセルによるDRAM混載LSI技術
- 21世紀のULSI製造技術の概観
- 半導体プロセス技術 : 情報処理技術 : 過去十年そして今後の十年
- 配線の信頼性を考慮したギガビットDRAMの設計法
- 配線の信頼性、信頼性に関連した歩留りを考慮したギガビットDRAMの設計法
- 配線の信頼性を考慮したギガビットDRAMの設計法
- 0.5V動作を可能にした基板電位制御形SOI回路技術 (特集 デバイスに高性能化をもたらすSOI基板)
- C-12-12 PD-SOI CMOSを用いたボディ入力型SCL回路の解析
- 周辺回路の歩留りを考慮したギガビットDRAMの最適冗長回路設計法
- TIS(Trench-Isolated-transistor using Side wall gate)を用いたギガビットDRAMのゲート絶縁膜信頼性の解析
- Datta-Das型スピントランジスタにおける性能と消費電力見積もり(低電圧/低消費電力技術,新デバイス・回路とその応用)
- Datta-Das型スピントランジスタにおける性能と消費電力見積もり(低電圧/低消費電力技術,新デバイス・回路とその応用)