hp22 nm Node Low Operating Power(LOP)向けSub-10nmゲートCMOS技術(VLSI回路,デバイス技術(高速,低電圧,低電力))
スポンサーリンク
概要
- 論文の詳細を見る
プロセスの最適化により高性能な10nmゲートCMOSを実現した。さらにhp22nmノードLow Operating Power(LOP)ターゲット達成のために必要な要素技術であるエレベーテッド・ソース/ドレイン・エクステンション権造、メタルゲート電極、およびゲート絶縁膜の最適化手法について検討することにより、高性能な微細CMOSFETを実現するためのガイドラインを示し、planar bulk CMOSでhp22nmノードLOPを実現できる見通しを得た。
- 社団法人電子情報通信学会の論文
- 2004-08-13
著者
-
須藤 裕之
(株)東芝セミコンダクター社soc研究開発センター
-
安武 信昭
(株)東芝セミコンダクター社SoC研究開発センター
-
大内 和也
(株)東芝セミコンダクター社SoC研究開発センター
-
藤原 実
(株)東芝セミコンダクター社SoC研究開発センター
-
安達 甘奈
(株)東芝セミコンダクター社SoC研究開発センター
-
外園 明
(株)東芝セミコンダクター社SoC研究開発センター
-
小島 健嗣
(株)東芝セミコンダクター社SoC研究開発センター
-
青木 伸俊
(株)東芝セミコンダクター社SoC研究開発センター
-
渡辺 健
(株)東芝セミコンダクター社SoC研究開発センター
-
諸岡 哲
(株)東芝セミコンダクター社SoC研究開発センター
-
水野 央之
(株)東芝セミコンダクター社プロセス技術推進センター
-
馬越 俊之
(株)東芝セミコンダクター社プロセス技術推進センター
-
清水 敬
(株)東芝セミコンダクター社プロセス技術推進センター
-
森 伸二
(株)東芝セミコンダクター社プロセス技術推進センター
-
小熊 英樹
(株)東芝セミコンダクター社プロセス技術推進センター
-
佐々木 俊之
(株)東芝セミコンダクター社プロセス技術推進センター
-
大村 光弘
(株)東芝セミコンダクター社プロセス技術推進センター
-
宮野 清孝
(株)東芝セミコンダクター社プロセス技術推進センター
-
山田 浩玲
(株)東芝セミコンダクター社プロセス技術推進センター
-
冨田 寛
(株)東芝セミコンダクター社プロセス技術推進センター
-
松下 大介
(株)東芝研究開発センター
-
村岡 浩一
(株)東芝研究開発センター
-
稲葉 聡
(株)東芝セミコンダクター社SoC研究開発センター
-
高柳 万里子
(株)東芝セミコンダクター社SoC研究開発センター
-
石丸 一成
(株)東芝セミコンダクター社SoC研究開発センター
-
石内 秀美
(株)東芝セミコンダクター社SoC研究開発センター
-
冨田 寛
(株)東芝セミコンダクター社
-
石丸 一成
(株)東芝セミコンダクター社半導体研究開発センター
-
石丸 一成
(株)東芝セミコンダクター社
-
安武 信昭
(株)東芝 セミコンダクター社 半導体研究開発センター
-
稲葉 聡
東芝セミコンダクター社半導体研究開発センター
-
稲葉 聡
(株)東芝セミコンダクター社
-
藤原 実
株式会社東芝セミコンダクター社半導体研究開発センター
-
外園 明
株式会社東芝セミコンダクター社半導体研究開発センター
-
小島 健嗣
東芝セミコンダクター社システムLSI事業部
-
大内 和也
SoC研究開発センター
-
清水 敬
プロセス技術推進センター
-
森 伸二
プロセス技術推進センター
-
馬越 俊幸
(株)東芝セミコンダクター社プロセス技術推進センター
-
諸岡 哲
半導体先端テクノロジーズ(selete)
-
青木 伸俊
(株)東芝研究開発センターデバイスプロセス開発センター
-
青木 伸俊
マイクロエレクトロニクス研
-
青木 伸俊
(株)東芝soc開発センター
-
松下 大介
東芝研究開発センターlsi基盤技術ラボラトリー
-
大村 光弘
東芝 セミコンダクター社 プロセス技術推進センター
-
宮野 清孝
(株)東芝 セミコンダクター社プロセス技術推進センター
-
宮野 清孝
東芝マイクロエレクトロニクス技術研究所
-
村岡 浩一
東芝研究開発センターlsi基盤技術ラボラトリー
-
村岡 浩一
(株)東芝 研究開発センターlsi基盤技術ラボラトリー
-
小島 健嗣
(株)東芝セミコンダクター社
-
石内 秀美
東芝 セミコンダクター社 半導体研究開発センター
-
石内 秀美
(株)東芝
-
青木 伸俊
東芝セミコンダクター社半導体研究開発センター
-
富田 寛
(株)東芝セミコンダクター社プロセス技術推進センター
-
諸岡 哲
(株)東芝 セミコンダクター社 半導体研究開発センター
-
清水 敬
(株)東芝 セミコンダクター社プロセス技術推進センター
-
外園 明
(株)東芝 セミコンダクター社 Soc研究開発センター
関連論文
- hp22 nm Node Low Operating Power(LOP)向けSub-10nmゲートCMOS技術(VLSI回路,デバイス技術(高速,低電圧,低電力))
- 14nmゲートCMOS技術 : poly-SiGe ゲート電極、及びNiSiを用いた低温プロセスによる性能向上
- 極薄膜NO Oxynitrideゲート絶縁膜とNi SALICIDEプロセスを用いた高性能35nmゲート長CMOS
- 窒素高濃度極薄SiON膜のV_改善メカニズム(ゲート絶縁膜,容量膜,機能膜及びメモリ技術)
- 低消費電力LSI用HfSiON-CMOSFET実用化技術(Advanced ULSI Technology, 先端デバイスの基礎と応用に関するアジアワークショップ(AWAD2005))
- キャビテーションジョットを用いた半導体表面洗浄法の開発 : 流体工学, 流体機械
- 627 キャビテーションジョットを用いた半導体表面洗浄法の開発
- 微細金属配線における抵抗率のサイズ効果予測のためのモンテカルロ・シミュレーション(プロセス・デバイス・回路シミュレーション及び一般)
- 2003 VLSI テクノロジーシンポジウム報告
- SRAMの特徴と今後の動向
- 90nm node CMOSプロセスによる128Mb-FBC(Floating Body Cell)メモリの技術開発(新メモリ技術とシステムLSI)
- 90nmCMOSプロセスによる128Mb-FBC(Floating Body Cell)メモリの技術開発(先端CMOSデバイス・プロセス技術)
- FinFETを用いたhp22nm node SRAMのロバストなデバイス設計(VLSI回路, デバイス技術(高速・低電圧・低消費電力))
- 90nmノード高性能部分空乏型SOI CMOSデバイス
- 高濃度に窒化されたゲート絶縁膜を有するMOSFETのアナログ特性
- ED2000-134 / SDM2000-116 / ICD-2000-70 SbとInの高角度ハローイオン注入による80nmゲート長CMOSの実現
- ED2000-134 / SDM2000-116 / ICD2000-70 SbとInの高角度ハローイオン注入による80nmゲート長CMOSの実現
- 32nm世代以降に向けた高性能Two-step Recessed SiGe-S/D構造pMOSFET(シリコン関連材料の作製と評価)
- LaAlO/Si基板界面への1原子層SrSi_2挿入による界面電気特性改善効果の実証(ゲート絶縁膜、容量膜、機能膜及びメモリ技術)
- SOI/Bulkハイブリッド基板を用いた高性能SoC実現のためのDRAM混載技術
- プラズマ窒化プロセスを用いた極薄ゲート絶縁膜形成における反応メカニズムの考察とさらなる薄膜化の検討
- SCM測定のシミュレーション解析
- ベース抵抗を低減したSOIラテラルBJT
- 3次元プロセスデバイスシミュレーションによるBulk-FinFETの駆動電流の改善(プロセス・デバイス・回路シミュレーション及び一般)
- バルクシリコン基板上に形成したゲート長20nm、フィン幅6nmの CMOS FinFET のプロセスインテグレーション技術とデバイス特性
- バルクシリコン基板上に形成したゲート長20nm、フィン幅6nmのCMOS FinFETのプロセスインテグレーション技術とデバイス特性(先端CMOSデバイス・プロセス技術)
- 次世代極薄ゲート酸窒化膜形成技術
- ポリメタルゲート電極技術
- サブ100nm向けエレベートソース・ドレイン構造の設計指針
- 次世代ウェーハプロセスにおけるケミカルコンタミネーションの影響と制御技術
- 次世代ウェーハプロセスにおけるケミカルコンタミネーションの影響と制御技術(プロセスクリーン化と新プロセス技術)
- hp22 nm Node Low Operating Power(LOP)向けSub-10nmゲートCMOS技術(VLSI回路,デバイス技術(高速,低電圧,低電力))
- 32nmノード以降に向けたFinFET SRAMセルのDC特性ばらつき(IEDM(先端CMOSデバイス・プロセス技術))
- CT-1-3 22nm世代に向けたFinFET SRAM技術(CT-1.10nm世代に向けた新LSI技術,チュートリアル講演,ソサイエティ企画)
- 不純物偏析Schottkyソース/ドレインを用いた高性能FinFET(IEDM(先端CMOSデバイス・プロセス技術))
- 不純物偏析 Schottky ソース/ドレインを用いた高性能FinFET
- 3次元プロセスデバイスシミュレーションによるBulk-FinFETの駆動電流の改善(プロセス・デバイス・回路シミュレーション及び一般)
- SRAM : 低電圧化とばらつきへの挑戦(VLSI回路,デバイス技術(高速,低電圧,低消費電力))
- hp32nmノード以降に向けた周辺回路がBulk Planar FET及びメモリセルがBulk-FinFETで構成されたSRAM技術について(VLSI回路,デバイス技術(高速,低電圧,低消費電力))
- SRAM: 低電圧化とばらつきへの挑戦(VLSI回路,デバイス技術(高速,低電圧,低消費電力))
- hp32nmノード以降に向けた周辺回路がBulk Planar FET及びメモリセルがBulk-FinFETで構成されたSRAM技術について(VLSI回路,デバイス技術(高速,低電圧,低消費電力))
- FinFETを用いたhp22nm node SRAMのロバストなデバイス設計(VLSI回路, デバイス技術(高速・低電圧・低消費電力))
- SOI/Bulkハイブリッド基板を用いた高性能SoC実現のためのDRAM混載技術
- SCM測定のシミュレーション解析
- SCM測定のシミュレーション解析
- SCM測定のシミュレーション解析
- サブ100nm向けエレベートソース・ドレイン構造の設計指針
- 0.15μm世代以降のサリサイドプロセス
- 酸化剤濃度コントロールSOMによるレジスト剥離技術
- 2.最先端FinFETプロセス・集積化技術(32nm世代VLSIを担うMore Moore技術-三次元ゲートMOSFET-)
- ED2000-134 / SDM2000-116 / ICD2000-70 SbとInの高角度ハローイオン注入による80nmゲート長CMOSの実現
- 低待機時電力HfSiON-CMOSFET技術(先端CMOSデバイス・プロセス技術)
- Mixed Signal CMOS用HfSiONゲート絶縁膜の最適化(VLSI回路, デバイス技術(高速・低電圧・低消費電力))
- Mixed Signal CMOS用HfSiONゲート絶縁膜の最適化(VLSI回路, デバイス技術(高速・低電圧・低消費電力))
- HfSiONゲート絶縁膜のヒステリシスに寄与するトラップの解析(ゲート絶縁膜, 容量膜, 機能膜及びメモリ技術)
- HfSiONゲート絶縁膜CMOSの性能と信頼性におけるHf濃度の影響
- HfSiON-CMOSFETの高性能・高信頼性に向けたHf濃度の指針(IEDM特集(先端CMOSデバイス・プロセス技術))
- 65nmノード世代に向けたHigh-kゲート絶縁膜(HfSiON)のCMOSFET設計(VLSI回路, デバイス技術(高速, 低電圧, 低電力))
- 65nmノード世代に向けたHigh-kゲート絶縁膜(HfSiON)のCMOSFET設計(VLSI回路, デバイス技術(高速, 低電圧, 低電力))
- プラズマ酸化とプラズマ窒化を用いた、低消費電力CMOSデバイス向けHfSiONゲート絶縁膜の形成(ゲート絶縁膜,容量膜,機能膜及びメモリ技術)
- NH_3におよるSi(100)の原子層熱窒化過程
- NH_3によるSi表面の低温熱窒化
- HfSiONの熱活性型破壊モデル(ゲート絶縁膜, 容量膜, 機能膜及びメモリ技術)
- ゲートリークの救世主、それはHigh-k!(VLSI回路, デバイス技術(高速・低電圧・低消費電力))
- ゲートリークの救世主、それはHigh-k!(VLSI回路, デバイス技術(高速・低電圧・低消費電力))
- 低環境負荷型Cuコンタクト界面洗浄プロセスの構築(配線・実装技術と関連材料技術)
- 濃度勾配法による量子効果を導入したデバイス・シミュレーション
- 濃度勾配法による量子効果を導入したデバイス・シミュレーション
- (110)シリコン基板上に形成した極薄酸化膜CMOSの電気的特性
- 高濃度に窒化されたゲート絶縁膜を有するMOSFETのアナログ特性
- 低消費電力LSI用HfSiON-CMOSFET実用化技術(Advanced ULSI Technology, 先端デバイスの基礎と応用に関するアジアワークショップ(AWAD2005))
- CMOS回路の低電圧化はどうすすめるべきか(VLSI回路,デバイス技術(高速,低電圧,低電力))
- CMOS回路の低電圧化はどうすすめるべきか(VLSI回路,デバイス技術(高速,低電圧,低電力))
- HfSiO(N)膜の欠陥生成と絶縁破壊機構(ゲート絶縁膜,容量膜,機能膜及びメモリ技術)
- 90nm世代におけるSoC向け高集積混載SRAM技術(MRAM,不揮発メモリ,メモリ,一般)
- 完全CMOSプロセスを用いたバイポーラ搭載高速キャッシュSRAM製造プロセスの開発
- 第一原理計算に基づいた包括的移動度モデリングとMOSFET界面エンジニアリングへの適用(IEDM特集(先端CMOSデバイス・プロセス技術))
- 28a-K-3 無水HFガスによるin-situ自然酸化膜エッチング機構
- アルゴンイオン注入のSOI-NMOSFET特性に対する影響
- チャネル長0.1μmSOI MOSFETにおけるself-heatingの影響考察
- 通信用LSIへのSOI技術の応用 : fmax 67GHz SOI 横型バイポーラトランジスタ技術
- Si/SiO_2界面歪緩和によるトンネル酸化膜の信頼性向上(高温希釈ウエット酸化プロセスの検討)
- 混載DRAMに適したSOI上の1トランジスタゲインセル(FBC)を使ったメモリ : セル特性及びメモリ性能の評価結果(VLSI回路, デバイス技術(高速, 低電圧, 低電力))
- SOI上に形成した混載DRAM用メモリセル : FBC(Floating Body Cell)(VLSI回路, デバイス技術(高速, 低電圧, 低電力))
- 混載DRAMに適したSOI上の1トランジスタゲインセル(FBC)を使ったメモリ : セル特性及びメモリ性能の評価結果(VLSI回路, デバイス技術(高速, 低電圧, 低電力))
- SOI上に形成した混載DRAM用メモリセル : FBC(Floating Body Cell)(VLSI回路, デバイス技術(高速, 低電圧, 低電力))
- 90nmノード高性能部分空乏型SOI CMOSデバイス
- ヘリウム一貫プロセスによる poly-Si/high-κ 絶縁膜/SiO_2/Si構造のシリサイド化抑制
- C-2-22 5GHz帯無線LAN用CMOS電圧制御発振器
- 7GHz CMOS低雑音増幅器
- 7GHz CMOS低雑音増幅器
- 7GHz CMOS低雑音増幅器
- 27aYG-6 第一原理計算によるSi中のNのAs活性化への影響予測(化合物・輸送・アモルファス・不純物)(領域4)
- 酸化工程における中低濃度Pの拡散シミュレーション
- N_2アニールにおけるAsの拡散・活性化シミュレーション
- 14nmゲート長CMOS技術
- 対拡散モデルを用いた高濃度ホウ素の拡散シミュレーション : 高速計算手法とシミュレーション精度
- メタルハードマスクプロセスを用いた32nm以細対応ELK配線技術(配線・実装技術と関連材料技術)
- ナノスケールMOSFETにおけるプラズマドーピングとレーザーアニールを適用した急峻SDEの検討(低電圧/低消費電力技術,新デバイス・回路とその応用)
- ナノスケールMOSFETにおけるプラズマドーピングとレーザーアニールを適用した急峻SDEの検討(低電圧/低消費電力技術,新デバイス・回路とその応用)