ブロックの重心を利用したフラクタル符号化の高速化
スポンサーリンク
概要
- 論文の詳細を見る
フラクタル符号化法は、原画像と原画像に縮小変換を施したものとの距離が最小になる変換を符号として使っている。この変換を求める際に画像を分割した小ブロック間を総当たりに比較するために、符号化時間が膨大になってしまうという欠点を持っている。ここでは変換として使われる対称変換、輝度シフト、輝度スケーリングのうち、対称変換を決定するのに必要な計算をブロックの重心を利用することで大幅に削減可能な手法を提案する。
- 一般社団法人情報処理学会の論文
- 1996-03-06
著者
関連論文
- 3Dモデル形状復元のための頂点周辺密度均一化によるパラメータ化(高精細画像の処理・表示,及び一般)
- ガウス混合モデルを用いた楽曲のコード認識(信号処理,LSI,及び一般)
- 準直交ランチョス法による大規模固有値問題の解法(数値計算)
- ブロックベースシームカービングを用いた画像のリサイズ(ディジタル信号処理)
- ブロックリフティング分解を用いたM分割整数離散コサイン変換(ディジタル信号処理)
- コサイン変調フィルタバンクに基づく画像符号化(信号処理,LSI及び一般)
- 精度評価付きMR法による行列の前処理について(HPC-1: 数値計算アルゴリズム(1))
- 1次元フィルタを用いたCosine変調2次元フィルタバンク
- ガウス混合モデルを用いた楽曲のコード認識(信号処理, LSI, 及び一般)
- 誤り訂正符号を用いた電子透かし
- 誤り訂正符号を用いた電子透かし
- 誤り訂正符号を用いた電子透かし
- エッジ情報を用いた補間による超解像処理(デモ展示・ポスター講演,ネットワークプロセッサ,通信のための信号処理,無線LAN/PAN,一般)
- エッジ情報を用いた補間による超解像処理(デモ展示・ポスター講演,ネットワークプロセッサ,通信のための信号処理,無線LAN/PAN,一般)
- エッジ情報を用いた補間による超解像処理(デモ展示・ポスター講演,ネットワークプロセッサ,通信のための信号処理,無線LAN/PAN,一般)
- 3Dモデル形状復元のための頂点周辺密度均一化によるパラメータ化
- 2次元一般化重複直交交換のラティス構造(システムと信号処理及び一般)
- 2次元一般化重複直交交換のラティス構造(システムと信号処理及び一般)
- 3Dモデル形状復元のための頂点周辺密度均一化によるパラメータ化
- 線形悪条件問題に対するGMRES法の反復終了条件
- Deflated GMRES(m)法の固有値と収束性について
- 画素の接続関係を考慮した非線形画像リサイズ(画像・映像処理)
- リフティング係数の低ビット語長割当を考慮した正規化整数WHTに基づく整数DCT(変換・符号化,時空間映像処理,画像符号化及び一般)
- コサイン・サイン変調フィルタバンクを用いた方向選択性及びシフト不変性を有するウェーブレット変換の実現と応用(一般,ネットワーク,通信のための信号処理及び一般)
- シームカービングを用いたリサイズ可能な画像の圧縮(変換・符号化,時空間映像処理,画像符号化及び一般)
- 2次元一般化重複直交交換のラティス構造(システムと信号処理及び一般)
- GMRES法における適応的なAugmentation(数値計算)
- 6N-1 Krylov部分空間におけるAugmented GMRES法について(数値計算とコンパイラ技術,学生セッション,アーキテクチャ)
- 線形悪条件問題に対する修正Augmented GMRES法
- クリロフ部分空間法のための新しい射影法について
- ウェーブレット変換による近似逆行列の計算(HPC-9:数値計算II,2008年並列/分散/協調処理に関する『佐賀』サマー・ワークショップ(SWoPP佐賀2008))
- 6N-3 ウェーブレット変換による行列の前処理(数値計算とコンパイラ技術,学生セッション,アーキテクチャ)
- 6N-2 デュアルピボットを行うマルチレベルILU分解(数値計算とコンパイラ技術,学生セッション,アーキテクチャ)
- シュールコンプリメントを用いた大規模な近似逆行列の計算(HPC-9 : 数値解析II)
- Sherman-Morrison法の並列化による近似逆行列の計算(数値計算アルゴリズム,インタラクション技術の原理と応用)
- 新しい準直交ランチョス法の収束性と精度評価について(HPC-9 : 数値解析)
- Sherman-Morrison 法の部分的な並列化による近似逆行列計算の高速化について(計算科学の基盤技術とその発展)
- Sherman-Morrison公式による前処理行列計算の精度評価とその再構成について(数値計算2)
- 大規模行列系に対する頑強な2階ILU分解前処理(HPC-1: 数値計算アルゴリズム(1))
- Ritz値を考慮したGMRES(m)法の適応的なリスタート(アルゴリズム・数値計算)
- 残差ノルムの収束判定を利用したGMRES(≦m_)法(数値計算アリゴリズム)
- シュールコンプリメントに対する前処理の一考察(HPC-9 : 数値計算アルゴリズム(2))(2004年並列/分散/協調処理に関する『青森』サマー・ワークショップ(SWoPP青森2004) : 研究会・連続同時開催)
- 線形悪条件問題に対するGMRES法の反復終了条件
- 非対称線形方程式に対するBiCGStab関連の方法
- 離散格子上でのCahn-Hilliard方程式におけるパターン形成
- DQGMRES (m,k)法とその前処理について
- 残差ノルムの収束判定を用いる適応的なGMRES($\le m_{max}$)法 (数値解析と新しい情報技術)
- 反復中に直交空間を再構成するML(k)BiCGStab法(HPC-1 : 数値計算アルゴリズム (1))(2003年並列/分散/協調処理に関する『松江』サマー・ワークショップ(SWoPP松江2003))
- 残差ノルムの収束停滞を適応的に回避するGMRES(m)法
- 並列性を考慮した大規模な線形システムの前処理
- 複素数演算を回避する Deflated-GMRES(m)法について
- 自動リスタート過程を持つGMRES(m)法の性能評価
- 並列ブロックグラムシュミット法を用いたDeflated-GMRES(m)法の一考察 (偏微分方程式の数値解法とその周辺II)
- 適応的にlを変化させるBiCGStab(l)法 (新しいシステムソフトウェア)
- 3D-6 DEFLATED-GMRES (m, k)法に関する一考察
- デフレーションを前処理とするGMRES($m$)法 (数値計算における前処理の研究)
- AP3000による2次元および3次元問題に対する不完全LU分解の並列化
- Deflated GMRES(m)法の固有値と収束性について
- 2000-HPC-81-10 左前処理行列を適応的に決定するGMRES(m)法の有効性について
- ILU分解を用いたマルチレベル前処理(HPC-9 : 数値計算アルゴリズム(2))(2004年並列/分散/協調処理に関する『青森』サマー・ワークショップ(SWoPP青森2004) : 研究会・連続同時開催)
- 2階ILU分解による行列の前処理とその応用について(HPC-9 : 数値計算アルゴリズム(2))(2004年並列/分散/協調処理に関する『青森』サマー・ワークショップ(SWoPP青森2004) : 研究会・連続同時開催)
- 接続問題から生ずる大規模な線形方程式の解法について : ランチョス法を中心にして(アプリケーションとその並列化)
- Ritz値を使ったGMRES法の収束性の評価について(数値計算アルゴリズム)
- ブロック分割によるreduced systemの前処理(数値計算アルゴリズム)
- Ritz値を使ったGMRES法の収束性の評価について
- ブロック分割による reduced system の前処理
- 最小残差法による前処理を用いたGMRES(&m&)法について (微分方程式の数値解法と線形計算)
- Origin2400におけるRBオーダリングによる不完全ブロック分解前処理の性能評価
- MR法による近似逆行列のRitz値について
- リスタート周期を動的に変えるGMRES(m)法
- シフト方程式に有効な前処理について
- BiCGSTAB法を改良したML(k)BiCGSTAB法の有効性について
- MR法を前処理とするGMRES(m)法について
- ブレイクダウンを起こさないランチョス法
- 2項漸化式に基づくQMR法
- 早期リスタートによるGMRES(m)法の高速化
- 適応的なリスタートを用いたORTHOMIN(k)法
- 不完全LU分解の並列化とその性能
- ORTHOMIN(k)法に対する適応的リスタート
- 適応的リスタートを用いた非定常反復法の収束性について(Part II)
- 適応的なリスタートを用いた非定常反復法の収束性について
- 重複する固有値に対応する固有ベクトルを計算するQDアルゴリズム
- QDアルゴリズムによる固有ベクトルの計算法
- 並列計算機によるCahn-Hilliard方程式の数値解析
- ハイブリッド GMRES法について
- 最小二乗問題に対するblock Gram-Schmidt法の適用
- AP1000を用いた下三角疎行列の直接解法
- シフトを行なった連立1次方程式に対するGMRES(m)法の有効性について
- 3D-7 Deflationを前処理とするGMRES (m)法
- 離散型線形悪条件問題に対する修正GMRES法
- フラクタル符号化の並列化
- 2000-HPC-82-9 リスタート周期を動的に変えるGMRES(m)法
- リスタート周期を動的に変えるGMRES(k)法について
- ブロックの重心を利用したフラクタル符号化の高速化
- Reaction-Diffusion EquationsのFractal次元における解析
- Reaction-Diffusion EquationsのFractal次元
- 適切なblock-sizeの決定法を用いたBlock Gram-Schmidt法の並列化
- 離散格子上での非線形拡散方程式における安定なパターンについて(数値計算アルゴリズムの研究)
- AP1000におけるBiCGStab(l)法の有効性について
- BiCGStab(l)法の収束特性について