Embedded Nanowire Network Growth and Node Device Fabrication for GaAs-Based High-Density Hexagonal Binary Decision Diagram Quantum Circuits
スポンサーリンク
概要
- 論文の詳細を見る
The basic feasibility of constructing hexagonal binary decision diagram (BDD) quantum circuits on GaAs-based selectively grown (SG) nanowires was investigated from viewpoints of electrical connections through embedded nanowires and electrical uniformity of devices formed on nanowires. For this, $\langle\bar{1}10\rangle$- and $\langle 510\rangle$-oriented nanowires and hexagonal network structures combining these nanowires were formed on (001) GaAs substrates by selective molecular beam epitaxy (MBE) growth. The width and vertical position of the nanowires could be controlled by growth conditions for both $\langle\bar{1}10\rangle$- and $\langle 510\rangle$-directions. By current–voltage ($I$–$V$) measurements, good electrical connection was confirmed at the node point where vertical alignment of embedded GaAs nanowire pieces was found to be important. SG quantum wire (QWR) switches formed on the nanowires showed good gate control over a wide temperature range with clear conductance quantization at low temperatures. Good device uniformities were obtained on the test chips, providing a good prospect for future integration. BDD node devices using SG QWR switches showed clear path switching characteristics. Estimated power-delay product values were very small, confirming the feasibility of ultra low-power operation of future circuits.
- 2006-04-30
著者
-
KASAI Seiya
Research Center for Integrated Quantum Electronics (RCIQE), Hokkaido University
-
TAMURA Takahiro
Research Center for Integrated Quantum Electronics and Graduate School of Information Science and Te
-
Sato Taketomo
Research Center For Integrated Quantum Electronics (rciqe) And Graduate School Of Information Scienc
-
Tamai Isao
Research Center For Integrated Quantum Electronics And Graduate School Of Information Science And Te
-
Hashizume Tamotsu
Research Center For Integrated Quantum Electronics (rciqe) And Graduate School Of Information Scienc
-
Sato Taketomo
Research Center for Integrated Quantum Electronics and Graduate School of Information Science and Technology, Hokkaido University, N13, W8, Kita-ku, Sapporo 060-8628, Japan
-
Hasegawa Hideki
Research Center for Integrated Quantum Electronics (RCIQE) and Graduate School of Information Science and Technology, Hokkaido University, North 13, West 8, Kita-ku, Sapporo 060-8628, Japan
-
Hasegawa Hideki
Research Center for Integrated Quantum Electronics and Graduate School of Information Science and Technology, Hokkaido University, N13, W8, Kita-ku, Sapporo 060-8628, Japan
-
Kasai Seiya
Research Center for Integrated Quantum Electronics (RCIQE) and Graduate School of Information Science and Technology, Hokkaido University, North 13, West 8, Sapporo 060-8628, Japan
-
Kasai Seiya
Research Center for Integrated Quantum Electronics and Graduate School of Information Science and Technology, Hokkaido University, N13, W8, Kita-ku, Sapporo 060-8628, Japan
-
Tamura Takahiro
Research Center for Integrated Quantum Electronics and Graduate School of Information Science and Technology, Hokkaido University, N13, W8, Kita-ku, Sapporo 060-8628, Japan
関連論文
- Realization of an extremely low reflectance surface based on InP porous nanostructures for application to photoelectrochemical solar cells
- 平成20年度リフレッシュ理科教室開催報告-サイエンスオリエンテーリング2008 in 札幌- : 北海道支部・北海道大学会場
- Interface characterization of Al_2O_3/AlGaN structures prepared by atomic layer deposition
- Characterization of GaN surfaces after high-temperature annealing and carbon diffusion(Session9B: GaN and SiC Device Process Technology)
- Selective molecular beam epitaxy growth of size- and position-controlled GaN/AlGaN nanowires on nonplanar (0001) substrates and its growth mechanism
- Liquid-phase sensors using open-gate AlGaN/GaN high electron mobility transistor structure
- Future of Heterostructure Microelectronics and Roles of Materials Research for Its Progress(Plenary,Heterostructure Microelectronics with TWHM2005)
- 2-bit Arithmetic Logic Unit Utilizing Hexagonal BDD Architecture for Implementation of Nanoprocessor on GaAs Nanowire Network(Session4B: Emerging Devices II)
- 2-bit Arithmetic Logic Unit Utilizing Hexagonal BDD Architecture for Implementation of Nanoprocessor on GaAs Nanowire Network(Session4B: Emerging Devices II)
- Nearly Temperature-Independent Saturation Drain Current in a Multi-Mesa-Channel AlGaN/GaN High-Electron-Mobility Transistor
- Characterization of deep electron levels of AlGaN grown by MOVPE(Session 6B : Wide Bandgap Materials and Devices, Power Devices)
- Characterization of deep electron levels of AlGaN grown by MOVPE(Session 6B : Wide Bandgap Materials and Devices, Power Devices)
- Gate Leakage in AlGaN/GaN Heterostructure Field Effect Transistors and Its Suppression by Novel Al_2O_3 Insulated Gate(Heterostructure Microelectronics with TWHM2003)
- Surface Passivation Process for GaN-Based Electronic Devices Utilizing ECR-CVD SiN_χ Film(Joint Special Issue on Heterostructure Microelectronics with TWHM 2000)
- Nitridation of GaP(100)Surfaces by rf Nitrogen Radicals and by Electron Cyclotron Resonance Nitrogen Plasma
- Nitridation of GaP Surfaces by Rf Nitrogen Radicals and by ECR Nitrogen Plasma
- In-Situ Contactless Characterization of Microscopic and Macroscopic Properties of Si-doped MBE-Grown (2×4) GaAs Surfaces
- In-Situ Contactless Characterization of Microscopic and Macroscopic Properties of Si-Doped MBE-Grown (2x4) GaAs Surfaces
- Interface characterization of Al_2O_3/AlGaN structures prepared by atomic layer deposition
- Precisely Controlled Anodic Etching for Processing of GaAs based Quantum Nanostructures and Devices
- Electrochemical Formation of Uniform and Straight Nano-Pore Arrays on(001)InP Surfaces and Their Photoluminescence Characterizations
- Process Charactarization and Optimization for a Novel Oxide-Free Insulated Gate Structure for InP MISFETs Having Silicon Interface Control Layer (Joint Special Issue on Heterostructure Microelectronics with TWHM 2000)
- Fabrication and Characterization of InGaAs/InAlAs Insulated Gate Pseudomorphic HENTs Having a Silicon Interface Control Layer
- Large Modulation of Conductance in Interdigital-Gated HEMT Devices Due to Surface Plasma Wave Interactions
- Large Conductance Modulation in Interdigital Gate HEMT Device due to Surface Plasma Wave Interactions and Its Device Application
- Electrochemical Etching of Indium Phosphide Surfaces Studied by Voltammetry and Scanned Probe Microscopes
- The Strong Correlation between Interface Microstructure and Barrier Height in Pt/n-InP Schottky Contacts Formed by an In Situ Electrochemical Process
- Formation of Size- and Position-Controlled Nanometer Size Pt Dots on GaAs and InP Substrates by Pulsed Electrochemical Deposition
- Performance of open-gate AlGaN/GaN HFET in various kinds of liquids
- Electrochemical formation of InP porous structures for their application to photoelectric conversion devices(Session 2B : Graphene and III-Vs)
- Electrochemical formation of InP porous structures for their application to photoelectric conversion devices(Session 2B : Graphene and III-Vs)
- Electrochemical Functionalization of InP Porous Nanostructures with a GOD Membrane for Amperometric Glucose Sensors
- Formation and application of InP porous structures on p-n substrates
- Formation and application of InP porous structures on p-n substrates
- Electrochemical formation and functionalization of InP porous nanostructures and their application to chemical sensors(Session8B: High-Frequency, Photonic and Sensing Devices)
- Electrochemical formation and functionalization of InP porous nanostructures and their application to chemical sensors(Session8B: High-Frequency, Photonic and Sensing Devices)
- Amperometric Detection of Hydrogen Peroxide Using InP Porous Nanostructures
- Chemical and Electrochemical Nanofabrication Processes for Schottky In-Plane Gate GaAs Single and Coupled Quantum Wire Transistors
- Fabrication of AlGaN/GaN Quantum Nanostructures by Methane-Based Dry Etching and Characterization of Their Electrical Properties
- Control of Order Parameter during Growth of In_Ga_P/GaAs Heterostructures by Gas Source Molecular Beam Epitaxy Using Tertiarybutylphosphine
- Sensing Mechanism of InP Hydrogen Sensors Using Pt Schottky Diodes Formed by Electrochemical Process
- Non-Destructive Characterization of Electronic Properties of Pre- and Post-Processing Silicon Surfaces by UHV Contactless Capacitance-Voltage Method
- Formation of Size- and Position-Controlled Nanometer Size Pt Dots on GaAs and InP Substrates by Pulsed Electrochemical Deposition
- Computer Simulation and Experimental Characterization of Single Electron Transistors Based on Schottky Wrap Gate Control of 2DEG
- Fabrication and Characterization of GaAs Single Electron Devices Having Single and Multiple Dots Based on Schottky In-Plane-Gate and Wrap-Gate Control of Two-Dimensional Electron Gas
- Realization of GaAs-Based Single Electron Devices Having Single and Multiple Dots by Schottky In-Plane-Gate Control of Two Dimensional Electron Gas
- Novel GaAs-Based Single-Electron Transistors with Schottky In-Plane Gates Operating up to 20 K
- Novel Schottky In-Plane Gate Single-Electron Transistors Using GaAs/AlGaAs System Operating up to 10K
- Observation of Conductance Quantization in A Novel Schottky In-Plane Gate Wire Transistor Fabricated by Low-Damage In Situ Electrochemical Process
- Hexagonal Binary Decision Diagram Quantum Circuit Approach for Ultra-Low Power III-V Quantum LSIs
- Optimization and Interface Characterization of a Novel Oxide-Free Insulated Gate Structure for InP Having an Ultrathin Silicon Interface Control Layer
- In-Situ XPS Study of Etch Chemistry of Methane-Based RIBE of InP Using N_2
- Fabrication and Characterization of Novel Oxide-Free InP Metal-Insulator-Semiconductor FETs Having an Ultra Narrow Si Surface Quantum Well
- Fabrication and Characterization of Novel Oxide-Free InP MISFETs Having an Ultra-Narrow Si Surface Quantum Well
- Characterization of Interface Electronic Properties of Low-Temperature Ultrathin Oxides and Oxynitrides Formed on Si(111) Surfaces by Contactless Capacitance-Voltage and Photoluminescence Methods
- Electronic Interface Properties of Low Temperature Ultrathin Oxides on Si(111) Surfaces Studied by Contactless Capacitance-Voltage and Photoluminescence Methods
- Characterization of GaN surfaces after high-temperature annealing and carbon diffusion(Session9B: GaN and SiC Device Process Technology)
- Compact Reconfigurable Binary-Decision-Diagram Logic Circuit on a GaAs Nanowire Network
- Basic Control Characteristics of Novel Schottky In-Plane and Wrap Gate Structures Studied by Simulation and Transport Measurements in GaAs and InGaAs Quantum Wires ( Quantum Dot Structures)
- Observation of Coulomb Blockade Type Conductance Oscillations up to 50 K in Gated InGaAs Ridge Quantum Wires Grown by Molecular Beam Epitaxy on InP Substrates
- Variation of Surface Potentials of Si-Doped Al_xGa_N (O
- Electrochemical Formation of Size-Controlled InP Nanostructures Using Anodic and Cathodic Reactions
- Optical Properties of Size-Controlled Porous Nanostructures Formed on n-InP (001) Substrates by Electrochemical Process
- Dynamic response of interface state charges in GaN MIS structures
- High-temperature and UV-assisted C-V characterization of GaN MIS structures
- Embedded Nanowire Network Growth and Node Device Fabrication for GaAs-Based High-Density Hexagonal BDD Quantum Circuits
- Growth kinetics and theoretical modeling of selective molecular beam epitaxy for growth of GaAs nanowires on nonplanar (001) and (111)B substrates
- Investigation of Side-gating Effects in GaAs-based Quantum Wire Transistor (QWRTr) utilizing Nanosized Schottky Gates
- Cross-Sectional Evolution and Its Mechanism during Selective MBE Growth of GaAs Quantum Wires on (111)B Substrates
- Growth of AlGaN/GaN Quantum Wire Structures by RF-Radical Assisted Selective MBE on Pre-Patterned Substrates
- Evolution Mechanism of Heterointerface Cross-section during Growth of GaAs Ridge Quantum Wires by Selective Molecular Beam Epitaxy
- Formation of Quantum Dots by Schottky Wrap Gate Control of 2DEG and Its Application to Single Electron Transistors
- Formation of Quantum Dots by Schottky Wrap Gate Control of 2DEG and Its Application to Single Electron Transistors
- Reactive Ion Beam Etching of GaN and AlGaN/GaN for Nanostructure Fabrication Using Methane-Based Gas Mixtures
- Novel Quantum Wire Branch-Switches for Binary Decision Diagram Logic Architecture Utilizing Schottky Wrap-Gate Control of GaAs/AlGaAs Nanowires
- Reactive Ion Beam Etching of GaN and AlGaN for Nano-structure Fabrication Using Methane-Based Gas Mixtures
- A Novel GaAs Binary Decision Diagram Device Having Quantum Wire Branch-Switches Controlled by Wrap Gates
- GaAs-Based Single Electron Transistors and Logic Inverters Utilizing Schottky Wrap-Gate Controlled Quantum Wires and Dots
- Electron Beam Induced Current Characterization of Novel GaAs Quantum Nanostructures Based on Potential Modulation of Two-Dimensional Electron Gas by Schottky In-Plane Gates
- Photoelectrochemical Etching and Removal of the Irregular Top Layer Formed on InP Porous Nanostructures
- Self-assembled formation of uniform InP nanopore arrays by electrochemical anodization in HCl based electrolyte
- Large Modulation of Conductance in Interdigital-Gated HEMT Devices Due to Surface Plasma Wave Interactions
- Growth kinetics and modeling of selective molecular beam epitaxial growth of GaAs ridge quantum wires on pre-patterned nonplanar substrates
- Formation of High-Density GaAs Hexagonal Nano-wire Networks by Selective MBE Growth on Pre-patterned (001) Substrates
- Large Schottky Barrier Heights ort Indium Phosphide-Based Materials Realized by In-Situ Electrochemical Process
- Enhancement of Schottky Barrier Heights on Indium Phosphide-Based Materials by In-Situ Electrochemical Process and Its Mechanism
- Electrochemical Formation of Self-Assembled InP Nanopore Arrays and Their Use as Templates for Molecular Beam Epitaxy Growth of InGaAs Quantum Wires and Dots
- A Novel Lateral Surface Superlattice Structure Utilizing Schottky Barrier Height Control by Doped Silicon Interface Control Layers
- Low Reflectance Surface Observed on InP Porous Structures after Photoelectrochemical Etching
- Large photocurrent-response observed at Pt/InP Schottky interface formed on anodic porous structure
- Control of Order Parameter during Growth of In0.5Ga0.5P/GaAs Heterostructures by Gas Source Molecular Beam Epitaxy Using Tertiarybutylphosphine
- Embedded Nanowire Network Growth and Node Device Fabrication for GaAs-Based High-Density Hexagonal Binary Decision Diagram Quantum Circuits
- Identification of Graphene Layer Numbers from Color Combination Contrast Image for Wide-Area Characterization
- Fabrication of AlGaN/GaN Quantum Nanostructures by Methane-Based Dry Etching and Characterization of Their Electrical Properties
- Formation of Thin Native Oxide Layer on n-GaN by Electrochemical Process in Mixed Solution with Glycol and Water
- Growth of AlGaN/GaN Quantum Wire Structures by Radio-Frequency-Radical-Assisted Selective Molecular Beam Epitaxy on Prepatterned Substrates
- Boolean Logic Gates Utilizing GaAs Three-Branch Nanowire Junctions Controlled by Schottky Wrap Gates
- Size-Controlled Porous Nanostructures Formed on InP(001) Substrates by Two-Step Electrochemical Process
- Fundamental Study of InP-Based Open-Gate Field-Effect Transistors for Application to Liquid-Phase Chemical Sensors
- Sensing Mechanism of InP Hydrogen Sensors Using Pt Schottky Diodes Formed by Electrochemical Process