Analysis of the Temperature Characteristics in Polycrystalline Si Solar Cells Using Modified Equivalent Circuit Model
スポンサーリンク
概要
- 論文の詳細を見る
We have evaluated the influence of grain boundaries on the temperature dependence of cell performance using a modified 2-diode equivalent circuit model. In this model, microscopic inhomogeneity of resistivity at or near grain boundaries can be taken into consideration. The calculated results by the modified 2-diode model agreed well with the measured current-voltage curves, and the validity of the fitting parameters in this model was discussed. One of the fitting parameters, $r$ is defined as the ratio of the recombination area, in which the recombination of minority carriers is pronounced. At 20°C, $r$ of the polycrystalline Si cell was larger than that of the single-crystalline Si cell. However, the difference in $r$ between them became negligible at temperatures above 80°C. These dependences were explained by considering the behavior of the free carriers in the recombination centers.
- Published by the Japan Society of Applied Physics through the Institute of Pure and Applied Physicsの論文
- 2003-12-15
著者
-
NISHIOKA Kensuke
Graduate School of Materials Science, Nara Institute of Science and Technology
-
SAKITANI Nobuhiro
Graduate School of Materials Science, Nara Institute of Science and Technology
-
YAMAMOTO Yukie
Graduate School of Materials Science, Nara Institute of Science and Technology
-
Kurobe Ken-ichi
Department Of Electronic Science And Engineering Kyoto University
-
Fuyuki Takashi
Graduate School Of Material Science Nara Institute Of Science And Technology
-
Uraoka Yukiharu
Graduate School Of Materials Science Nara Institute Of Science And Technology
-
Ishikawa Yasuaki
Graduate School Of Materials Science Nara Institute Of Science And Technology
-
Kurobe Ken-ichi
Department of Electronic Science and Engineering, Kyoto University, Yoshida-Honmachi, Sakyo, Kyoto 606-8501, Japan
-
Nishioka Kensuke
Graduate School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
-
Nishioka Kensuke
Graduate School of Materials Science, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
-
Yamamoto Yukie
Graduate School of Materials Science, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
-
Uraoka Yukiharu
Graduate School of Material Science, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
-
Sakitani Nobuhiro
Graduate School of Materials Science, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
関連論文
- Investigation of Near-Interface Traps Generated by NO Direct Oxidation in C-face 4H-SiC Metal-Oxide-Semiconductor Structures
- Novel Stacked Nanodisk with Quantum Effect Fabricated by Defect-free Chlorine Neutral Beam Etching
- A New Silicon Quantum-Well Structure with Controlled Diameter and Thickness Fabricated with Ferritin Iron Core Mask and Chlorine Neutral Beam Etching
- Electron Injection into Si Nanodot Fabricated by Side-Wall Plasma Enhanced Chemical Vapor Deposition
- Gate Length Dependence of Hot Carrier Reliability in Low-Temperature Polycrystatline-Silicon P-Channel Thin Film Transistors
- Low Temperature Nitridation of Si Oxide Utilizing Activated Nitrogen(Semiconductors)
- Comprehensive Study on Reliability of Low-Temperature Poly-Si Thin-Film Transistors under Dynamic Complimentary Metal-Oxide Semiconductor Operations
- Hot Carrier Effect in Low-Temperature poly-Si p-ch Thin-Film Transistors under Dynamic Stress : Semiconductors
- Floating Gate MOS Capacitor with High-Density Nanodots Array Produced by Protein Supramolecule
- High-Density Floating Nanodots Memory Produced by Cage-Shaped Protein
- Fabrication of Defect-Free Sub-10nm Si Nanocolumn for Quantum Effect Devices Using Cl Neutral Beam Process
- Carrier Injection/Transport Characteristics of Photochromic Diarylethene Film : Surfaces, Interfaces, and Films
- Solution Electrochemiluminescent Cell with a High Luminance Using an Ion Conductive Assistant Dopant Optics and Quantum Electronics
- Solution Electrochemiluminescent Cell Using Tris(phenylpyridine) Iridium : Optics and Quantum Electronics
- Improving High-κ Gate Dielectric Properties by High-Pressure Water Vapor Annealing
- Strain in GaP Films Heteroepitaxially Grown on Si by Metalorganic Chemical Vapor Deposition
- Evaluation of InGaP/InGaAs/Ge Triple-Junction Solar Cell under Concentrated Light by Simulation Program with Integrated Circuit Emphasis
- Analysis of the Temperature Characteristics in Polycrystalline Si Solar Cells Using Modified Equivalent Circuit Model
- NH_3 Plasma Pretreatment of 4H-SiC(0001) Surface for Reduction of Interface States in Metal-Oxide-Semiconductor Devices
- Determination of Minority-Carrier Lifetime in Multicrystalline Silicon Solar Cells using Current Transient Behaviors
- Plasma-Induced Transconductance Degradation of nMOSFET with Thin Gate Oxide
- Evaluation of Plasma Damage to Gate Oxide (Special Issue on Quarter Micron Si Device and Process Technologies)
- Quantitative Evaluation of Gate Oxide Damage during Plasma Processing Using Antenna-Structure Capacitors
- Thickness Dependence of Electrical Properties for High-$k$ SrTa2O6 Thin Films Fabricated by Sol--Gel Method
- Analysis of Device Performance by Quasi Three-Dimensional Simulation for Thin Film Polycrystalline Silicon Solar Cells with Columnar Structure : Semiconductors
- Location and Density Control of Carbon Nanotubes Synthesized Using Ferritin Molecules
- Three-Dimensional Nanodot-Type Floating Gate Memory Fabricated by Bio-Layer-by-Layer Method
- Passivation Effect of Plasma Chemical Vapor Deposited SiNx on Single-Crystalline Silicon Thin-Film Solar Cells
- Thermal Etching of 4H-SiC(0001) Si Faces in the Mixed Gas of Chlorine and Oxygen
- Reliability of High-Frequency Operation of Low-Temperature Polysilicon Thin Film Transistors under Dynamic Stress
- New Two-Diode Model for Detailed Analysis of Multicrystalline Silicon Solar Cells
- Reliability of Low-Temperature Poly-Si Thin Film Transistors with Lightly Doped Drain Structures
- Floating Gate Memory with Biomineralized Nanodots Embedded in High-$k$ Gate Dielectric
- Rear Side Passivated Monocrystalline Silicon Thin Film Solar Cells with Laser Fired Contact Process
- Low Temperature Nitridation of Si Oxide Utilizing Activated Oxygen and Nitrogen
- Electrical Properties and Thermal Stability of Cu/6H-SiC Junctions : Electrical Properties of Condensed Matter
- Three-Dimensional Nanodot-Type Floating Gate Memory Fabricated by Bio-Layer-by-Layer Method
- Polycrystalline Silicon Thin Film for Solar Cells Utilizing Aluminum Induced Crystallization Method
- Unique Phenomenon in Degradation of Amorphous In_2O_3-Ga_2O_3-ZnO Thin-Film Transistors under Dynamic Stress
- Irradiation-Damages in Atmospheric Plasma Used in a Resist Ashing Process for Thin Film Transistors
- High-Pressure Water Vapor Heat Treatment for Enhancement of SiOx or SiNx Passivation Layers of Silicon Solar Cells
- Thin-Film Devices Fabricated on Double-Layered Polycrystalline Silicon Films Formed by Green Laser Annealing (Special Issue : Active-Matrix Flatpanel Displays and Devices : TFT Technologies and FPD Materials)
- Low-Temperature-Processed Zinc Oxide Thin-Film Transistors Fabricated by Plasma-Assisted Atomic Layer Deposition (Special Issue : Solid State Devices and Materials (1))
- Analysis of Photoelectrochemical Processes in $\alpha$-SiC Substrates with Atomically Flat Surfaces
- Two-Dimensional Si-Nanodisk Array Fabricated Using Bio-Nano-Process and Neutral Beam Etching for Realistic Quantum Effect Devices
- Selective Emitter Formation by Laser Doping for Phosphorous-Doped n-Type Silicon Solar Cells
- Laser-Doping Technique Using Ultraviolet Laser for Shallow Doping in Crystalline Silicon Solar Cell Fabrication
- Evaluation of Crystallinity in 4H–SiC{0001} Epilayers Thermally Etched by Chlorine and Oxygen System
- Thermally Stimulated Current Analysis of Defects in Sol-Gel Derived SrTaO Thin-Film Capacitors (Special Issue : Ferroelectric Materials and Their Applications)
- Origin of Anisotropic Electrical Properties of 4H-SiC Trench Metal-Oxide-Semiconductor Field-Effect Transistors on Off-Axis Substrates
- Improved Electronic Properties of Laser-Doped Emitters by Reducing Surface Roughness
- Spatially Resolved Electroluminescence Imaging of Shunt Sources in Crystalline Silicon Solar Cells
- Shape Control of Trenched 4H-SiC C-Face by Thermal Chlorine Etching
- Improving Crystallinity of Thin Si Film for Low-Energy-Loss Micro-/Nano-Electromechanical Systems Devices by Metal-Induced Lateral Crystallization Using Biomineralized Ni Nanoparticles (Special Issue : Applied Physics on Materials Research)
- Size Control of ZnS Nanoparticles by Electro-Spray Deposition Method
- Floating Gate Memory Based on Ferritin Nanodots with High-$k$ Gate Dielectrics
- Analysis of the Temperature Characteristics in Polycrystalline Si Solar Cells Using Modified Equivalent Circuit Model
- Floating Gate Metal–Oxide–Semiconductor Capacitor Employing Array of High-Density Nanodots Produced by Protein Supramolecule
- Floating Nanodot Gate Memory Devices Based on Biomineralized Inorganic Nanodot Array as a Storage Node
- Degradation in Low-Temperature Poly-Si Thin Film Transistors Depending on Grain Boundaries
- Evaluation of InGaP/InGaAs/Ge Triple-Junction Solar Cell under Concentrated Light by Simulation Program with Integrated Circuit Emphasis
- Effect of SiO2 Tunnel Oxide Thickness on Electron Tunneling Mechanism in Si Nanocrystal Dots Floating-Gate Memories
- Hot Carrier Effect in UltraThin Gate Oxide Metal Oxide Semiconductor Field Effect Transistor
- Analysis of Hot Carrier Effect in Low-Temperature Poly-Si Gate-Overlapped Lightly Doped Drain Thin Film Transistors
- Analysis of p–n Junction Profiles of Polycrystalline Silicon Thin-Film Solar Cells by Electron-Beam-Induced Current Technique
- Hot Carrier Effects in Low-Temperature Polysilicon Thin-Film Transistors
- Fabrication of Anodic Oxidation Films on 4H–SiC at Room Temperature Using HNO3-Based Electrolytes
- Effect of Nitrogen on Electrical and Physical Properties of Polyatomic Layer Chemical Vapor Deposition HfSixOy Gate Dielectrics
- Nucleation Control by Intermittent Supply of Dichlorosilane towards the Fabrication of Polycrystalline Silicon Thin Films with Large Grain Size
- Low-Temperature Microcrystalline Silicon Film Deposited by High-Density and Low-Potential Plasma Technique Using Hydrogen Radicals
- Dependence of Solar Cell Performance on Electronic Properties at Grain Boundaries in Polycrystalline Silicon Thin Films Deposited by Atmospheric Pressure Chemical Vapor Deposition
- Effects of Dot Density and Dot Size on Charge Injection Characteristics in Nanodot Array Produced by Protein Supramolecules
- Novel Method for Making Nanodot Arrays Using a Cage-like Protein
- Annealing and Composition Effects of (BaxSr1-x)Ta2O6 Thin Films Fabricated by Sol–Gel Method
- Precise Analysis of Surface Recombination Velocity in Crystalline Silicon Solar Cells Using Electroluminescence
- Improvement of SiO2/SiC Interface Properties by Nitrogen Radical Irradiation
- Fabrication of Zinc Oxide Nanopatterns by Quick Gel-Nanoimprint Process toward Optical Switching Devices
- Adsorption Density Control of Ferritin Molecules by Multistep Alternate Coating
- Role of Hydrogen in Dry Etching of Silicon Carbide Using Inductively and Capacitively Coupled Plasma
- Plasmon Absorbance of SiO
- Electron Injection into Si Nanodot Fabricated by Side-Wall Plasma Enhanced Chemical Vapor Deposition
- Low Temperature Nitridation of Si Oxide Utilizing Activated Oxygen and Nitrogen
- Nondestructive Analysis of Crystal Defects in 4H-SiC Epilayer by Devised Electron-Beam-Induced Current Method
- Periodically Aligned Submicron Lines of Silicon and Nickel Fabricated using Linearly Polarized Nd:YAG Pulse Laser
- Periodically Aligned Submicron Dots of Silicon and Nickel Fabricated by Irradiation with Linearly Polarized Nd:YAG Pulsed Laser