Forward Transfer of Thin-Film Devices to Flexible Substrates by Applying Thermal Stress
スポンサーリンク
概要
- 論文の詳細を見る
We report the transfer of thin semiconductor films from a glass substrate to a plastic film using a germanium dioxide (GeO2) removing layer formed between the thin semiconductor films and the glass substrate. We applied thermal stress to achieve a rapid lateral etching of the GeO2 layer at several tens of mm/min by introducing an epoxy layer as an adhesive to attach the thin films to the plastic films. The GeO2 layer was dissolved up to a distance of 5 mm from the edge region of the 4-in.-diameter samples when the samples were kept in an 80–100 °C hot water bath for 90 min. The subsequent cooling of the sample at room temperature caused the complete etching of the GeO2 layer within 2 min. The rapid GeO2 dissolution resulting from the thermal stress induced by the epoxy layer bent the thin semiconductor layer and plastic films in the edge region and introduced water into the central region of the samples. Polycrystalline silicon thin-film transistors (poly-Si TFTs) were successfully transferred onto plastic films using the present method.
- Published by the Japan Society of Applied Physics through the Institute of Pure and Applied Physicsの論文
- 2007-10-15
著者
-
TAKECHI Kazushige
Technology Research Association for Advanced Display Materials (TRADIM)
-
Sameshima Toshiyuki
Tokyo A&t University
-
Takechi Kazushige
Technology Research Association for Advanced Display Materials, Koganei, Tokyo 184-0012, Japan
-
Yoshioka Kazuya
Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
-
Iwasaki Tomoya
Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
関連論文
- Quasi-Static Capacitance-Voltage Characteristics of Polycrystalline Silicon Thin-Film Transistors
- Very High Rate and Uniform Glass Etching with HF/HCl Spray for Transferring Thin-Film Transistor Arrays to Flexible Substrates
- Improvement of SiO_2 Properties and Silicon Surface Passivation by Heat Treatment with High-Pressure H_2O Vapor
- High pressure water vapor annealing for improving HfSiO dielectrics properties
- Crystalline Properties of Laser Crystallized Silicon Films
- The Gas Combustion of H_2 with N_2O Used for Rapid Thermal Annealing
- Application of Rapid Joule Heating Method to Fabrication of Polycrystalline Silicon Thin Film Transistors
- Rapid Joule Heating of Metal Films Used to Fabricate Polycrystalline Silicon Thin Film Transistors : Semiconductors
- Improving High-κ Gate Dielectric Properties by High-Pressure Water Vapor Annealing
- Improvement of InGaZnO_4 Thin Film Transistors Characteristics Utilizing Excimer Laser Annealing
- Improvement in Characteristics of Polycrystalline Silicon Thin-Film Transistors by Heating with High-Pressure H_2O Vapor
- Heat Theatment of Amorphous and Polycrystalline Silicon Thin Films with High-Pressure H_2O Vapor
- Heat Treatment of Amorphous and Polycrystalline Silicon Thin Films with H_20 Vapor
- Heat Treatment with High-Pressure H_2O Vapor of Pulsed Laser Crystallized Silicon Films
- Electrical Properties of Excimer-Laser-Crystallized Lightly Doped Polycrystalline Silicon Films
- High-Pressure H_2O Vapor Heat Treatment Used to Fabricate Poly-Si Thin Film Transistors : Semiconductors
- Characterization of Plasma-Irradiated SiO2/Si Interface Properties by Photoinduced-Carrier Microwave Absorption Method
- Infrared Semiconductor Laser Crystallization of Silicon Thin Films Using Diamond-Like Carbon as Photoabsorption Layer
- Minority Carrier Lifetime Measurements by Photoinduced Carrier Microwave Absorption Method
- Crystalline Silicon Solar Cells with Two Different Metals
- Defect Reduction in Polycrystalline Silicon Thin Films at 150 °C
- Effects of Excimer Laser Annealing on InGaZnO4 Thin-Film Transistors Having Different Active-Layer Thicknesses Compared with Those on Polycrystalline Silicon
- Flexible High-Performance Amorphous InGaZnO4 Thin-Film Transistors Utilizing Excimer Laser Annealing
- Study on Current Crowding in the Output Characteristics of Amorphous InGaZnO4 Thin-Film Transistors Using Dual-Gate Structures with Various Active-Layer Thicknesses
- Application of the Meyer–Neldel Rule to the Subthreshold Characteristics of Amorphous InGaZnO4 Thin-Film Transistors
- Temperature-Dependent Transfer Characteristics of Amorphous InGaZnO4 Thin-Film Transistors
- Comparison of Ultraviolet Photo-Field Effects between Hydrogenated Amorphous Silicon and Amorphous InGaZnO4 Thin-Film Transistors
- Electrical Properties of Pulsed Laser Crystallized Silicon Films
- Activation Behavior of Boron and Phosphorus Atoms Implanted in Polycrystalline Silicon Films by Heat Treatment at 250°C
- Improvement of Electrical Properties of Pulsed Laser Crystallized Silicon Films by Oxygen Plasma Treatment
- Improvement of Si0_2 Properties by Heating Treatment in High Pressure H_20 Vapor
- Crystalline Grain Growth in the Lateral Direction for Silicon Thin Films by Electrical Current-Induced Joule Heating
- Measurements of Temperature Distribution in Polycrystalline Thin Film Transistors Caused by Self-Heating
- Current-Induced Joule Heating Used to Crystallize Silicon Thin Films
- Defect Reduction in Polycrystalline Silicon Thin Films by Heat Treatment with High-Pressure H2O Vapor
- Minority Carrier Lifetime Behavior in Crystalline Silicon in Rapid Laser Heating (Special Issue : Active-Matrix Flatpanel Displays and Devices : TFT Technologies and FPD Materials)
- Passivation of SiO_2/Si Interfaces Using High-Pressure-H_2O-Vapor Heating
- Activation of Implanted Boron Atoms in Silicon Wafers by Infrared Semiconductor Laser Annealing Using Carbon Films as Optical Absorption Layers
- Very High Rate and Uniform Glass Etching with HF/HCl Spray for Transferring Thin-Film Transistor Arrays to Flexible Substrates
- Experimental Study of Silicon Monolayers for Future Extremely Thin Silicon-on-Insulator Devices : Phonon/Band Structures Modulation Due to Quantum Confinement Effects (Special Issue : Solid State Devices and Materials (1))
- Surface Passivation of Crystalline Silicon by Combination of Amorphous Silicon Deposition with High-Pressure H2O Vapor Heat Treatment
- Investigation of Silicon Surface Passivation by Microwave Annealing Using Multiple-Wavelength Light-Induced Carrier Lifetime Measurement
- Improvement in SiO2 Film Properties Formed by Sputtering Method at 150 °C
- Multi Junction Solar Cells Stacked with Transparent and Conductive Adhesive
- Activation of Silicon Implanted with Phosphorus Atoms by Infrared Semiconductor Laser Annealing
- Heating Layer of Diamond-Like Carbon Films Used for Crystallization of Silicon Films
- Characterization of Polycrystalline Silicon Thin-Film Transistors
- Recrystallization Behavior of Silicon Implanted with Phosphorus Atoms by Infrared Semiconductor Laser Annealing
- Analysis of Microwave Absorption Caused by Free Carriers in Silicon
- Activation of Silicon Implanted with Phosphorus and Boron Atoms by Infrared Semiconductor Laser Rapid Annealing
- Improvement of Reliability in Low-Temperature Polycrystalline Silicon Thin-Film Transistors by Water Vapor Annealing
- Quasi-Static Capacitance–Voltage Characteristics of Polycrystalline Silicon Thin-Film Transistors
- Effects of Thermal Annealing on ZnO Thin-Film Transistor Characteristics and the Application of Excimer Laser Annealing in Plastic-Based ZnO Thin-Film Transistors
- Pulsed Laser Annealing of Thin Silicon Films
- Minority Carrier Annihilation in Lateral Direction Caused by Recombination Defects at Cut Edges and Bear Surfaces of Crystalline Silicon
- Effect of Zinc Oxide Film Deposition Position on the Characteristics of Zinc Oxide Thin Film Transistors Fabricated by Low-Temperature Magnetron Sputtering
- Forward Transfer of Thin-Film Devices to Flexible Substrates by Applying Thermal Stress
- Germanium Oxide Layers Used for Forward Transfer of Electrical Circuits to Foreign Plastic Substrates
- Multi junction solar cells using band-gap induced cascaded light absorption