Flexible High-Performance Amorphous InGaZnO4 Thin-Film Transistors Utilizing Excimer Laser Annealing
スポンサーリンク
概要
- 論文の詳細を見る
We have investigated an excimer laser annealing (ELA) process for use in fabricating high-performance amorphous InGaZnO4 (IGZO) thin-film transistors (TFTs) on flexible plastic substrates. We numerically estimate the temperature increase of the IGZO film and substrate as a function of laser energy density. This is one of the most important measures for optimizing ELA conditions in order to apply plastic-based TFT fabrication. Because the optical absorption coefficient of IGZO film is three orders of magnitude higher than that of plastic substrates with respect to 308-nm laser light, it is possible to selectively increase the temperature of the IGZO film. The temperature of the IGZO film is estimated to increase to approximately 1500 °C at typical laser energy levels. Furthermore, incorporating a SiO2 buffer layer (some hundreds of nm) between the IGZO film and the plastic substrate is found to effectively suppress thermal damage to the substrate. We have experimentally investigated the properties of IGZO films irradiated with various excimer-laser energy densities. X-ray diffraction patterns and carrier densities of the IGZO films are found to significantly vary with laser energy density. We have used calculations and experimental results to optimize the ELA process; this has enabled us to produce high-performance IGZO-TFTs having a field-effect mobility of 15.6 cm2 V-1 s-1.
- 2009-08-25
著者
-
TAKECHI Kazushige
Technology Research Association for Advanced Display Materials (TRADIM)
-
Yamaguchi Hirotaka
Nec Lcd Technologies Ltd.
-
Kaneko Setsuo
Nec Lcd Technologies Ltd.
-
Nakata Mitsuru
Technology Research Association For Advanced Display Materials (tradim)
-
Tokumitsu Eisuke
Tokyo Institute Of Technology
-
EGUCHI Toshimasa
Technology Research Association for Advanced Display Materials (TRADIM)
-
Tokumitsu Eisuke
Tokyo Institute of Technology, Yokohama 226-8503, Japan
関連論文
- Quasi-Static Capacitance-Voltage Characteristics of Polycrystalline Silicon Thin-Film Transistors
- Very High Rate and Uniform Glass Etching with HF/HCl Spray for Transferring Thin-Film Transistor Arrays to Flexible Substrates
- Improvement of InGaZnO_4 Thin Film Transistors Characteristics Utilizing Excimer Laser Annealing
- Ultra Slim and Bendable Backlight System with a Unified Component for Liquid Crystal Display Applications
- Effects of Excimer Laser Annealing on InGaZnO4 Thin-Film Transistors Having Different Active-Layer Thicknesses Compared with Those on Polycrystalline Silicon
- Flexible High-Performance Amorphous InGaZnO4 Thin-Film Transistors Utilizing Excimer Laser Annealing
- Study on Current Crowding in the Output Characteristics of Amorphous InGaZnO4 Thin-Film Transistors Using Dual-Gate Structures with Various Active-Layer Thicknesses
- Application of the Meyer–Neldel Rule to the Subthreshold Characteristics of Amorphous InGaZnO4 Thin-Film Transistors
- Temperature-Dependent Transfer Characteristics of Amorphous InGaZnO4 Thin-Film Transistors
- Comparison of Ultraviolet Photo-Field Effects between Hydrogenated Amorphous Silicon and Amorphous InGaZnO4 Thin-Film Transistors
- Very High Rate and Uniform Glass Etching with HF/HCl Spray for Transferring Thin-Film Transistor Arrays to Flexible Substrates
- Quasi-Static Capacitance–Voltage Characteristics of Polycrystalline Silicon Thin-Film Transistors
- Effects of Thermal Annealing on ZnO Thin-Film Transistor Characteristics and the Application of Excimer Laser Annealing in Plastic-Based ZnO Thin-Film Transistors
- Effect of Zinc Oxide Film Deposition Position on the Characteristics of Zinc Oxide Thin Film Transistors Fabricated by Low-Temperature Magnetron Sputtering
- Forward Transfer of Thin-Film Devices to Flexible Substrates by Applying Thermal Stress