Characterization of Polycrystalline Silicon Thin-Film Transistors
スポンサーリンク
概要
- 論文の詳細を見る
The nonlinear behavior of the transfer characteristics of polycrystalline silicon thin-film transistors (poly-Si TFTs) at the threshold voltage was analyzed. The threshold voltage $V_{\text{T}}$ was defined as the gate voltage giving half of the maximum transconductance ($G_{\text{mMAX}}/2$). The nonlinear parameter $\Delta V$ was also introduced as the maximum transconductance divided by the differential of $G_{\text{m}}$ at $V_{\text{T}}$. $V_{\text{T}}$ and $\Delta V$ increased as the density of defect states increased. Moreover, $\Delta V$ increased as the energy level of defects increased near the band edge. $\Delta V$ gave the carrier density and the Fermi level at the silicon surface at $V_{\text{T}}$. $V_{\text{T}}$ and $\Delta V$ also gave the density of occupied defects states at $V_{\text{T}}$. Analysis using $V_{\text{T}}$ and $\Delta V$ was applied to the characterization of n-channel TFTs fabricated with laser crystallization and H2O vapor annealing. $V_{\text{T}}$ and $\Delta V$ were 0.90 and 0.81 V, respectively. They gave the Fermi level and the densities of electron carrier and occupied defect states at the threshold voltage as 0.91 eV, $2.2\times 10^{10}$ and $1.8\times 10^{11}$ cm-2, respectively.
- Published by the Japan Society of Applied Physics through the Institute of Pure and Applied Physicsの論文
- 2006-03-15
著者
-
Kimura Mutsumi
Ryukoku Univ. Otsu Jpn
-
Sameshima Toshiyuki
Tokyo A&t University
-
Kimura Mutsumi
Ryukoku University, Seta, Otsu 520-2194, Japan
関連論文
- Classification of Driving Methods for TFT-OLEDs and Novel Proposal Using Time Ratio Grayscale and Current Uniformization(Electronic Displays)
- Improvement of SiO_2 Properties and Silicon Surface Passivation by Heat Treatment with High-Pressure H_2O Vapor
- High pressure water vapor annealing for improving HfSiO dielectrics properties
- Crystalline Properties of Laser Crystallized Silicon Films
- The Gas Combustion of H_2 with N_2O Used for Rapid Thermal Annealing
- Device Characterization of Thin-Film Phototransistors for Photosensor Applications
- Application of Rapid Joule Heating Method to Fabrication of Polycrystalline Silicon Thin Film Transistors
- Rapid Joule Heating of Metal Films Used to Fabricate Polycrystalline Silicon Thin Film Transistors : Semiconductors
- Improving High-κ Gate Dielectric Properties by High-Pressure Water Vapor Annealing
- Pulse-Width Modulation with Current Uniformization for TFT-OLEDs(Electronic Displays)
- Improvement in Characteristics of Polycrystalline Silicon Thin-Film Transistors by Heating with High-Pressure H_2O Vapor
- Heat Theatment of Amorphous and Polycrystalline Silicon Thin Films with High-Pressure H_2O Vapor
- Heat Treatment of Amorphous and Polycrystalline Silicon Thin Films with H_20 Vapor
- Heat Treatment with High-Pressure H_2O Vapor of Pulsed Laser Crystallized Silicon Films
- Electrical Properties of Excimer-Laser-Crystallized Lightly Doped Polycrystalline Silicon Films
- High-Pressure H_2O Vapor Heat Treatment Used to Fabricate Poly-Si Thin Film Transistors : Semiconductors
- Characterization of Plasma-Irradiated SiO2/Si Interface Properties by Photoinduced-Carrier Microwave Absorption Method
- Infrared Semiconductor Laser Crystallization of Silicon Thin Films Using Diamond-Like Carbon as Photoabsorption Layer
- Minority Carrier Lifetime Measurements by Photoinduced Carrier Microwave Absorption Method
- Crystalline Silicon Solar Cells with Two Different Metals
- Defect Reduction in Polycrystalline Silicon Thin Films at 150 °C
- Electrical Properties of Pulsed Laser Crystallized Silicon Films
- Activation Behavior of Boron and Phosphorus Atoms Implanted in Polycrystalline Silicon Films by Heat Treatment at 250°C
- Improvement of Electrical Properties of Pulsed Laser Crystallized Silicon Films by Oxygen Plasma Treatment
- Improvement of Si0_2 Properties by Heating Treatment in High Pressure H_20 Vapor
- Crystalline Grain Growth in the Lateral Direction for Silicon Thin Films by Electrical Current-Induced Joule Heating
- Measurements of Temperature Distribution in Polycrystalline Thin Film Transistors Caused by Self-Heating
- Current-Induced Joule Heating Used to Crystallize Silicon Thin Films
- Defect Reduction in Polycrystalline Silicon Thin Films by Heat Treatment with High-Pressure H2O Vapor
- Minority Carrier Lifetime Behavior in Crystalline Silicon in Rapid Laser Heating (Special Issue : Active-Matrix Flatpanel Displays and Devices : TFT Technologies and FPD Materials)
- Passivation of SiO_2/Si Interfaces Using High-Pressure-H_2O-Vapor Heating
- Activation of Implanted Boron Atoms in Silicon Wafers by Infrared Semiconductor Laser Annealing Using Carbon Films as Optical Absorption Layers
- Experimental Study of Silicon Monolayers for Future Extremely Thin Silicon-on-Insulator Devices : Phonon/Band Structures Modulation Due to Quantum Confinement Effects (Special Issue : Solid State Devices and Materials (1))
- Surface Passivation of Crystalline Silicon by Combination of Amorphous Silicon Deposition with High-Pressure H2O Vapor Heat Treatment
- Investigation of Silicon Surface Passivation by Microwave Annealing Using Multiple-Wavelength Light-Induced Carrier Lifetime Measurement
- Improvement in SiO2 Film Properties Formed by Sputtering Method at 150 °C
- Multi Junction Solar Cells Stacked with Transparent and Conductive Adhesive
- Activation of Silicon Implanted with Phosphorus Atoms by Infrared Semiconductor Laser Annealing
- Heating Layer of Diamond-Like Carbon Films Used for Crystallization of Silicon Films
- Characterization of Polycrystalline Silicon Thin-Film Transistors
- Recrystallization Behavior of Silicon Implanted with Phosphorus Atoms by Infrared Semiconductor Laser Annealing
- Analysis of Microwave Absorption Caused by Free Carriers in Silicon
- Activation of Silicon Implanted with Phosphorus and Boron Atoms by Infrared Semiconductor Laser Rapid Annealing
- Improvement of Reliability in Low-Temperature Polycrystalline Silicon Thin-Film Transistors by Water Vapor Annealing
- Pulsed Laser Annealing of Thin Silicon Films
- Minority Carrier Annihilation in Lateral Direction Caused by Recombination Defects at Cut Edges and Bear Surfaces of Crystalline Silicon
- Forward Transfer of Thin-Film Devices to Flexible Substrates by Applying Thermal Stress
- Germanium Oxide Layers Used for Forward Transfer of Electrical Circuits to Foreign Plastic Substrates
- Multi junction solar cells using band-gap induced cascaded light absorption