Passivation of SiO_2/Si Interfaces Using High-Pressure-H_2O-Vapor Heating
スポンサーリンク
概要
- 論文の詳細を見る
High-pressure H_2O vapor heating was used for the passivation of silicon surface. The thermally evaporated SiO_x films formed on the silicon surface was oxidized and Si-O bonding density increased with an activation energy of 0.035eV with increasing heating temperature upon heat treatment with 1.0×10^6 Pa H_2O vapor. The peak wave number and full width at half maximum of the Si-O absorption band due to the Si-O-Si antisymmetric stretching vibration mode were changed to 1077 cm^<-1>and 72cm^<-1> respectively. The density of silicon dangling bonds was reduced from 2.0×10^<17>(as deposited)to 1.4×10^<15>cm^<-3>by heat treatment. The effective surface recombination velocity of the p-type silicon wafer that was coated with SiO_x films was markedly reduced from 405cm/s(as deposited)to 13cm/s by heat treatment with 2.1×10^6 Pa-H_2O vapor at 260℃ for 3 h. The interfaces retained the low recombination velocity 8000 h after keeping the sample in air. Effective field effect passivation was demonstrated using a SiO_x/SiO_2 double layered structure formed by the combination of thermal evaporation and heat treatment with high-pressure H_2O vapor.
- 2000-05-15
著者
-
Sakamoto Keiji
Tokyo University Of Agriculture And Technology
-
Sameshima Toshiyuki
Tokyo A&t University
関連論文
- Improvement of SiO_2 Properties and Silicon Surface Passivation by Heat Treatment with High-Pressure H_2O Vapor
- High pressure water vapor annealing for improving HfSiO dielectrics properties
- Crystalline Properties of Laser Crystallized Silicon Films
- The Gas Combustion of H_2 with N_2O Used for Rapid Thermal Annealing
- Application of Rapid Joule Heating Method to Fabrication of Polycrystalline Silicon Thin Film Transistors
- Rapid Joule Heating of Metal Films Used to Fabricate Polycrystalline Silicon Thin Film Transistors : Semiconductors
- Improving High-κ Gate Dielectric Properties by High-Pressure Water Vapor Annealing
- Improvement in Characteristics of Polycrystalline Silicon Thin-Film Transistors by Heating with High-Pressure H_2O Vapor
- Heat Theatment of Amorphous and Polycrystalline Silicon Thin Films with High-Pressure H_2O Vapor
- Heat Treatment of Amorphous and Polycrystalline Silicon Thin Films with H_20 Vapor
- Heat Treatment with High-Pressure H_2O Vapor of Pulsed Laser Crystallized Silicon Films
- Electrical Properties of Excimer-Laser-Crystallized Lightly Doped Polycrystalline Silicon Films
- High-Pressure H_2O Vapor Heat Treatment Used to Fabricate Poly-Si Thin Film Transistors : Semiconductors
- Characterization of Plasma-Irradiated SiO2/Si Interface Properties by Photoinduced-Carrier Microwave Absorption Method
- Infrared Semiconductor Laser Crystallization of Silicon Thin Films Using Diamond-Like Carbon as Photoabsorption Layer
- Minority Carrier Lifetime Measurements by Photoinduced Carrier Microwave Absorption Method
- Crystalline Silicon Solar Cells with Two Different Metals
- Defect Reduction in Polycrystalline Silicon Thin Films at 150 °C
- Electrical Properties of Pulsed Laser Crystallized Silicon Films
- Activation Behavior of Boron and Phosphorus Atoms Implanted in Polycrystalline Silicon Films by Heat Treatment at 250°C
- Improvement of Electrical Properties of Pulsed Laser Crystallized Silicon Films by Oxygen Plasma Treatment
- Improvement of Si0_2 Properties by Heating Treatment in High Pressure H_20 Vapor
- Crystalline Grain Growth in the Lateral Direction for Silicon Thin Films by Electrical Current-Induced Joule Heating
- Measurements of Temperature Distribution in Polycrystalline Thin Film Transistors Caused by Self-Heating
- Current-Induced Joule Heating Used to Crystallize Silicon Thin Films
- Defect Reduction in Polycrystalline Silicon Thin Films by Heat Treatment with High-Pressure H2O Vapor
- Minority Carrier Lifetime Behavior in Crystalline Silicon in Rapid Laser Heating (Special Issue : Active-Matrix Flatpanel Displays and Devices : TFT Technologies and FPD Materials)
- Passivation of SiO_2/Si Interfaces Using High-Pressure-H_2O-Vapor Heating
- Activation of Implanted Boron Atoms in Silicon Wafers by Infrared Semiconductor Laser Annealing Using Carbon Films as Optical Absorption Layers
- Experimental Study of Silicon Monolayers for Future Extremely Thin Silicon-on-Insulator Devices : Phonon/Band Structures Modulation Due to Quantum Confinement Effects (Special Issue : Solid State Devices and Materials (1))
- Surface Passivation of Crystalline Silicon by Combination of Amorphous Silicon Deposition with High-Pressure H2O Vapor Heat Treatment
- Investigation of Silicon Surface Passivation by Microwave Annealing Using Multiple-Wavelength Light-Induced Carrier Lifetime Measurement
- Improvement in SiO2 Film Properties Formed by Sputtering Method at 150 °C
- Multi Junction Solar Cells Stacked with Transparent and Conductive Adhesive
- Activation of Silicon Implanted with Phosphorus Atoms by Infrared Semiconductor Laser Annealing
- Heating Layer of Diamond-Like Carbon Films Used for Crystallization of Silicon Films
- Characterization of Polycrystalline Silicon Thin-Film Transistors
- Recrystallization Behavior of Silicon Implanted with Phosphorus Atoms by Infrared Semiconductor Laser Annealing
- Analysis of Microwave Absorption Caused by Free Carriers in Silicon
- Activation of Silicon Implanted with Phosphorus and Boron Atoms by Infrared Semiconductor Laser Rapid Annealing
- Improvement of Reliability in Low-Temperature Polycrystalline Silicon Thin-Film Transistors by Water Vapor Annealing
- Pulsed Laser Annealing of Thin Silicon Films
- Minority Carrier Annihilation in Lateral Direction Caused by Recombination Defects at Cut Edges and Bear Surfaces of Crystalline Silicon
- Forward Transfer of Thin-Film Devices to Flexible Substrates by Applying Thermal Stress
- Germanium Oxide Layers Used for Forward Transfer of Electrical Circuits to Foreign Plastic Substrates
- Multi junction solar cells using band-gap induced cascaded light absorption