Solid-Phase Diffusion of Carbon into GaN Using SiNx/CNx/GaN Structure
スポンサーリンク
概要
- 論文の詳細を見る
We performed a feasibility study on the solid-phase diffusion of carbon into GaN using a SiNx/CNx/GaN structure prepared by electron-cyclotron-resonance-assisted chemical vapor deposition. An X-ray photoelectron spectroscopy study on the CNx layer deposited on GaN showed that its energy positions and spectrum features are very close to those of a C-N bond, and the N composition was estimated to be 24 %, indicating a highly C-rich layer. No degradation in the chemical properties of the GaN surface was found after the diffusion process at 1000 ℃. A secondary ion mass spectrometry result clearly showed a diffusion of carbon into GaN. We also observed an increase in resistivity for the C-diffused GaN layer.
- Japan Society of Applied Physicsの論文
- 2007-03-25
著者
-
Ootomo Shinya
Yokohama R&d Laboratories The Furukawa Electric Co. Ltd.
-
KIMURA Takeshi
Research Center for Integrated Quantum Electronics (RCIQE), Hokkaido University
-
Hashizume Tamotsu
Research Center For Integrated Quantum Electronics Hokkaido University
-
YOSHIDA Seikoh
Yokohama R&D Laboratories, The Furukawa Electric Co., Ltd
-
Nomura Takehiko
Yokohama R&d Laboratories The Furukawa Electric Co. Ltd.
-
Yoshida Seikoh
Yokohama R&d Laboratories The Furukawa Electric Co. Ltd.
関連論文
- Realization of an extremely low reflectance surface based on InP porous nanostructures for application to photoelectrochemical solar cells
- Interface characterization of Al_2O_3/AlGaN structures prepared by atomic layer deposition
- Characterization of GaN surfaces after high-temperature annealing and carbon diffusion(Session9B: GaN and SiC Device Process Technology)
- Future of Heterostructure Microelectronics and Roles of Materials Research for Its Progress(Plenary,Heterostructure Microelectronics with TWHM2005)
- 2-bit Arithmetic Logic Unit Utilizing Hexagonal BDD Architecture for Implementation of Nanoprocessor on GaAs Nanowire Network(Session4B: Emerging Devices II)
- 2-bit Arithmetic Logic Unit Utilizing Hexagonal BDD Architecture for Implementation of Nanoprocessor on GaAs Nanowire Network(Session4B: Emerging Devices II)
- Nearly Temperature-Independent Saturation Drain Current in a Multi-Mesa-Channel AlGaN/GaN High-Electron-Mobility Transistor
- Characterization of deep electron levels of AlGaN grown by MOVPE(Session 6B : Wide Bandgap Materials and Devices, Power Devices)
- Gate Leakage in AlGaN/GaN Heterostructure Field Effect Transistors and Its Suppression by Novel Al_2O_3 Insulated Gate(Heterostructure Microelectronics with TWHM2003)
- Surface Passivation Process for GaN-Based Electronic Devices Utilizing ECR-CVD SiN_χ Film(Joint Special Issue on Heterostructure Microelectronics with TWHM 2000)
- Nitridation of GaP(100)Surfaces by rf Nitrogen Radicals and by Electron Cyclotron Resonance Nitrogen Plasma
- Nitridation of GaP Surfaces by Rf Nitrogen Radicals and by ECR Nitrogen Plasma
- Arsenic Surfactant and Incorporation Effects on Cubic GaN Grown by Metalorganic Vapor Phase Epitaxy
- In-Situ Contactless Characterization of Microscopic and Macroscopic Properties of Si-doped MBE-Grown (2×4) GaAs Surfaces
- In-Situ Contactless Characterization of Microscopic and Macroscopic Properties of Si-Doped MBE-Grown (2x4) GaAs Surfaces
- Interface characterization of Al_2O_3/AlGaN structures prepared by atomic layer deposition
- Solid-Phase Diffusion of Carbon into GaN Using SiNx/CNx/GaN Structure
- Large Modulation of Conductance in Interdigital-Gated HEMT Devices Due to Surface Plasma Wave Interactions
- Large Conductance Modulation in Interdigital Gate HEMT Device due to Surface Plasma Wave Interactions and Its Device Application
- Performance of open-gate AlGaN/GaN HFET in various kinds of liquids
- Electrochemical formation of InP porous structures for their application to photoelectric conversion devices(Session 2B : Graphene and III-Vs)
- Electrochemical formation of InP porous structures for their application to photoelectric conversion devices(Session 2B : Graphene and III-Vs)
- Electrochemical Functionalization of InP Porous Nanostructures with a GOD Membrane for Amperometric Glucose Sensors
- Fundamental Study of InP-Based Open-Gate Field-Effect Transistors for Application to Liquid-Phase Chemical Sensors
- Formation and application of InP porous structures on p-n substrates
- Formation and application of InP porous structures on p-n substrates
- Electrochemical formation and functionalization of InP porous nanostructures and their application to chemical sensors(Session8B: High-Frequency, Photonic and Sensing Devices)
- Electrochemical formation and functionalization of InP porous nanostructures and their application to chemical sensors(Session8B: High-Frequency, Photonic and Sensing Devices)
- Amperometric Detection of Hydrogen Peroxide Using InP Porous Nanostructures
- Low On-Voltage Operation AlGaN/GaN Schottky Barrier Diode with a Dual Schottky Structure(Power Devices, Fundamental and Application of Advanced Semiconductor Devices)
- Low On-Voltage Operation GaN Based Field Effect Schottky Barrier Diode(Session A7 High Power Devices)(2004 Asia-Pacific Workshop on Fundamentals and Application of Advanced Semiconductor Devices (AWAD 2004))
- Low On-Voltage Operation GaN Based Field Effect Schottky Barrier Diode(Session A7 High Power Devices)(2004 Asia-Pacific Workshop on Fundamentals and Application of Advanced Semiconductor Devices (AWAD 2004))
- Surface Control Process of AlGaN for Suppression of Gate Leakage Currents in AlGaN/GaN Heterostructure Field Effect Transistors
- Fabrication of AlGaN/GaN Quantum Nanostructures by Methane-Based Dry Etching and Characterization of Their Electrical Properties
- Control of Order Parameter during Growth of In_Ga_P/GaAs Heterostructures by Gas Source Molecular Beam Epitaxy Using Tertiarybutylphosphine
- Sensing Mechanism of InP Hydrogen Sensors Using Pt Schottky Diodes Formed by Electrochemical Process
- Non-Destructive Characterization of Electronic Properties of Pre- and Post-Processing Silicon Surfaces by UHV Contactless Capacitance-Voltage Method
- Realization of GaAs-Based Single Electron Devices Having Single and Multiple Dots by Schottky In-Plane-Gate Control of Two Dimensional Electron Gas
- Novel GaAs-Based Single-Electron Transistors with Schottky In-Plane Gates Operating up to 20 K
- Novel Schottky In-Plane Gate Single-Electron Transistors Using GaAs/AlGaAs System Operating up to 10K
- Observation of Conductance Quantization in A Novel Schottky In-Plane Gate Wire Transistor Fabricated by Low-Damage In Situ Electrochemical Process
- In-Situ XPS Study of Etch Chemistry of Methane-Based RIBE of InP Using N_2
- Fabrication and Characterization of Novel Oxide-Free InP Metal-Insulator-Semiconductor FETs Having an Ultra Narrow Si Surface Quantum Well
- Fabrication and Characterization of Novel Oxide-Free InP MISFETs Having an Ultra-Narrow Si Surface Quantum Well
- X-Ray Photoelectron Spectroscopy and Ultrahigh Vacuum Contactless Capacitance-Voltage Characterization of Novel Oxide-Free InP Passivation Process Using a Silicon Surface Quantum Well
- Characterization of Interface Electronic Properties of Low-Temperature Ultrathin Oxides and Oxynitrides Formed on Si(111) Surfaces by Contactless Capacitance-Voltage and Photoluminescence Methods
- Electronic Interface Properties of Low Temperature Ultrathin Oxides on Si(111) Surfaces Studied by Contactless Capacitance-Voltage and Photoluminescence Methods
- A Fabrication of Very Low Contact Resistance AIGaN/GaN Heterojunction Field-Effect Transistor Using Selective Area Growth Technique by Gas-Source Molecular Beam Epitaxy : Optics and Quantum Electronics
- Characterization of GaN surfaces after high-temperature annealing and carbon diffusion(Session9B: GaN and SiC Device Process Technology)
- Basic Control Characteristics of Novel Schottky In-Plane and Wrap Gate Structures Studied by Simulation and Transport Measurements in GaAs and InGaAs Quantum Wires ( Quantum Dot Structures)
- Observation of Coulomb Blockade Type Conductance Oscillations up to 50 K in Gated InGaAs Ridge Quantum Wires Grown by Molecular Beam Epitaxy on InP Substrates
- Variation of Surface Potentials of Si-Doped Al_xGa_N (O
- Optical Properties of Size-Controlled Porous Nanostructures Formed on n-InP (001) Substrates by Electrochemical Process
- Dynamic response of interface state charges in GaN MIS structures
- High-temperature and UV-assisted C-V characterization of GaN MIS structures
- Formation of Thin Native Oxide Layer on n-GaN by Electrochemical Process in Mixed Solution with Glycol and Water
- Embedded Nanowire Network Growth and Node Device Fabrication for GaAs-Based High-Density Hexagonal BDD Quantum Circuits
- Growth of AlGaN/GaN Quantum Wire Structures by RF-Radical Assisted Selective MBE on Pre-Patterned Substrates
- Formation of Quantum Dots by Schottky Wrap Gate Control of 2DEG and Its Application to Single Electron Transistors
- Formation of Quantum Dots by Schottky Wrap Gate Control of 2DEG and Its Application to Single Electron Transistors
- Capacitance-Voltage Behavior of Insulated Gate InGaAs HEMT Capacitors Having Silicon Interface Control Layer
- Novel Insulated Gate InGaAs HEMT Technology Using Silicon Interface Control Layer
- Electron Beam Induced Current Characterization of Novel GaAs Quantum Nanostructures Based on Potential Modulation of Two-Dimensional Electron Gas by Schottky In-Plane Gates
- Successful Passivation of Air-Exposed AlGaAs Surfaces by a Silicon Interface Control Layer-Based Technique
- Photoluminescence and X-Ray Photoelectron Study of AlGaAs/GaAs Near-Surface Quantum Wells Passivated by a Novel Interface Control Technique
- More than 10^3 Times Photoluminescence Intensity Recovery by Silicon Interface-Control-Layer-Based Surface Passivation of Near-Surface Quantum Wells
- Over 2 A Operation at 250 °C of GaN Metal–Oxide–Semiconductor Field Effect Transistors on Sapphire Substrates
- Low Reflectance Surface Observed on InP Porous Structures after Photoelectrochemical Etching
- High Power AIGaN/GaN HFET
- Si Ion Implantation into Mg-Doped GaN for Fabrication of Reduced Surface Field Metal–Oxide–Semiconductor Field-Effect Transistors
- Solid-Phase Diffusion of Carbon into GaN Using SiNx/CNx/GaN Structure