Nanoscale Wet Etching of Physical-Vapor-Deposited Titanium Nitride and Its Application to Sub-30-nm-Gate-Length Fin-Type Double-Gate Metal–Oxide–Semiconductor Field-Effect Transistor Fabrication
スポンサーリンク
概要
- 論文の詳細を見る
The nanoscale wet etching of physical-vapor-deposited (PVD) titanium nitride (TiN) and its application to sub-30-nm-gate-length fin-type double-gate metal–oxide–semiconductor field-effect transistor (FinFET) fabrication are systematically investigated. It is experimentally found that PVD-TiN side-etching depth can be controlled to be one-half of PVD-TiN thickness with precise time control using an $\text{ammonium hydroxide (NH$_{4}$OH)} : \text{hydrogen peroxide (H$_{2}$O$_{2}$)} : \text{deionized water (H$_{2}$O)} = 1 : 2 : 5$ solution at 60 °C. Using the developed nanoscale PVD-TiN wet etching technique, sub-30-nm-physical-gate-length FinFETs, 100-nm-tall fin-channel complementary MOS (CMOS) inverters and static random access memory (SRAM) half-cells have successfully been fabricated and demonstrated. These experimental results indicate that the developed nanoscale PVD-TiN wet etching technique is very useful for tall fin-channel CMOS fabrication.
- 2010-06-25
著者
-
LIU Yongxun
National Institute of Advanced Industrial Science and Technology
-
Endo Kazuhiko
National Inst. Advanced Industrial Sci. And Technol. Ibaraki Jpn
-
Takashi Matsukawa
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
-
Kunihiro Sakamoto
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
-
Junichi Tsukada
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
-
Yuki Ishikawa
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
-
Hiromi Yamauchi
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
-
Meishoku Masahara
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
-
Kamei Takahiro
School of Science and Technology, Meiji University, Kawasaki 214-8571, Japan
-
Atsushi Ogura
School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan
-
Tetsuro Hayashida
School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan
-
Shinichi O'uchi
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
関連論文
- Cross-Sectional Channel Shape Dependence of Short-Channel Effects in Fin-Type Double-Gate Metal Oxide Semiconductor Field-Effect Transistors
- Fin-Type Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistors Fabricated by Orientation-Dependent Etching and Electron Beam Lithography
- Fabrication of Four-Terminal Fin Field-Effect Transistors with Asymmetric Gate-Oxide Thickness Using an Anisotropic Oxidation Process with a Neutral Beam
- New Fabrication Technology of Fin Field Effect Transistors Using Neutral-Beam Etching
- Fabrication of a Vertical-Channel Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor Using a Neutral Beam Etching
- Low-Leakage-Current Ultra-thin SiO_2 Film by Low-Temperature Neutral Beam Oxidation
- Deoxidization of Cu Oxide under Extremely Low Oxygen Pressure Ambient
- Vertical Ultrathin-channel Multi-gate MOSFETs (MuGFETs) : Technological Challenges and Future Developments
- Investigation of N-Channel Triple-Gate MOSFETs on (100) SOI Substrate
- Experimental Study of Physical-Vapor-Deposited Titanium Nitride Gate with An n+-Polycrystalline Silicon Capping Layer and Its Application to 20 nm Fin-Type Double-Gate Metal--Oxide--Semiconductor Field-Effect Transistors
- Suppression of Fermi Level Pinning and Flat Band Voltage Shift by Inserting Diamond-Like Carbon at a High-$k$/SiO2 Interface in a Gate Stack Structure
- High-Performance Three-Terminal Fin Field-Effect Transistors Fabricated by a Combination of Damage-Free Neutral-Beam Etching and Neutral-Beam Oxidation
- A Comparative Study of Nitrogen Gas Flow Ratio Dependence on the Electrical Characteristics of Sputtered Titanium Nitride Gate Bulk Planar Metal–Oxide–Semiconductor Field-Effect Transistors and Fin-Type Metal–Oxide–Semiconductor Field-Effect Transistors
- Nitrogen Gas Flow Ratio and Rapid Thermal Annealing Temperature Dependences of Sputtered Titanium Nitride Gate Work Function and Their Effect on Device Characteristics
- Fabrication of a Vertical-Channel Double-Gate Metal–Oxide–Semiconductor Field-Effect Transistor Using a Neutral Beam Etching
- Investigation of Thermal Stability of TiN Film Formed by Atomic Layer Deposition Using Tetrakis(dimethylamino)titanium Precursor for Metal-Gate Metal–Oxide–Semiconductor Field-Effect Transistor
- Investigation of Low-Energy Tilted Ion Implantation for Fin-Type Double-Gate Metal–Oxide–Semiconductor Field-Effect Transistor Extension Doping
- Study of Charge Trap Sites in SiN Films by Hard X-ray Photoelectron Spectroscopy
- Nanoscale Wet Etching of Physical-Vapor-Deposited Titanium Nitride and Its Application to Sub-30-nm-Gate-Length Fin-Type Double-Gate Metal–Oxide–Semiconductor Field-Effect Transistor Fabrication
- Chemical Vapor Deposition of GeSbTe Thin Films for Next-Generation Phase Change Memory
- Experimental Study of Floating-Gate-Type MetalOxideSemiconductor Capacitors with Nanosize Triangular Cross-Sectional Tunnel Areas for Low Operating Voltage Flash Memory Application (Special Issue : Microprocesses and Nanotechnology)
- Fabrication and Characterization of NOR-Type Tri-Gate Flash Memory with Improved Inter-Poly Dielectric Layer by Rapid Thermal Oxidation (Special Issue : Microprocesses and Nanotechnology)
- Fabrication of Floating-Gate-Type Fin-Channel Double- and Tri-Gate Flash Memories and Comparative Study of Their Electrical Characteristics
- Experimental Comparisons between Tetrakis(dimethylamino)titanium Precursor-Based Atomic-Layer-Deposited and Physical-Vapor-Deposited Titanium--Nitride Gate for High-Performance Fin-Type Metal--Oxide--Semiconductor Field-Effect Transistors
- Evaluation of Anisotropic Biaxial Stress by Raman Spectroscopy with a High Numerical Aperture Immersion Objective Lens
- Investigation of N-Channel Triple-Gate Metal–Oxide–Semiconductor Field-Effect Transistors on (100) Silicon On Insulator Substrate
- Fin-Type Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistors Fabricated by Orientation-Dependent Etching and Electron Beam Lithography
- Cross-Sectional Channel Shape Dependence of Short-Channel Effects in Fin-Type Double-Gate Metal Oxide Semiconductor Field-Effect Transistors
- New Fabrication Technology of Fin Field Effect Transistors Using Neutral-Beam Etching
- Experimental Study of Effective Carrier Mobility of Multi-Fin-Type Double-Gate Metal–Oxide–Semiconductor Field-Effect Transistors with (111) Channel Surface Fabricated by Orientation-Dependent Wet Etching
- Low Temperature, Beam-Orientation-Dependent, Lattice-Plane-Independent, and Damage-Free Oxidation for Three-Dimensional Structure by Neutral Beam Oxidation
- 1/f Noise Characteristics of Fin-Type Field-Effect Transistors in Saturation Region
- Gate Structure Dependence of Variability in Polycrystalline Silicon Fin-Channel Flash Memories
- Independent-Double-Gate FinFET SRAM Technology
- Reduction of Moisture in Semiconductor Dry Process Equipment by Generating Extremely Low Oxygen Ambience
- Deoxidization of Cu Oxide under Extremely Low Oxygen Pressure Ambient
- Gate Structure Dependence of Variability in Polycrystalline Silicon Fin-Channel Flash Memories (Special Issue : Microprocesses and Nanotechnology)
- Experimental study of three-dimensional fin-channel charge trapping flash memories with titanium nitride and polycrystalline silicon gates