Experimental study of three-dimensional fin-channel charge trapping flash memories with titanium nitride and polycrystalline silicon gates
スポンサーリンク
概要
- 論文の詳細を見る
- Institute of Physicsの論文
- 2014-03-27
著者
関連論文
- Cross-Sectional Channel Shape Dependence of Short-Channel Effects in Fin-Type Double-Gate Metal Oxide Semiconductor Field-Effect Transistors
- Fin-Type Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistors Fabricated by Orientation-Dependent Etching and Electron Beam Lithography
- New Fabrication Technology of Fin Field Effect Transistors Using Neutral-Beam Etching
- Fabrication of a Vertical-Channel Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor Using a Neutral Beam Etching
- Vertical Ultrathin-channel Multi-gate MOSFETs (MuGFETs) : Technological Challenges and Future Developments
- Investigation of N-Channel Triple-Gate MOSFETs on (100) SOI Substrate
- Experimental Study of Physical-Vapor-Deposited Titanium Nitride Gate with An n+-Polycrystalline Silicon Capping Layer and Its Application to 20 nm Fin-Type Double-Gate Metal--Oxide--Semiconductor Field-Effect Transistors
- A Comparative Study of Nitrogen Gas Flow Ratio Dependence on the Electrical Characteristics of Sputtered Titanium Nitride Gate Bulk Planar Metal–Oxide–Semiconductor Field-Effect Transistors and Fin-Type Metal–Oxide–Semiconductor Field-Effect Transistors
- Nitrogen Gas Flow Ratio and Rapid Thermal Annealing Temperature Dependences of Sputtered Titanium Nitride Gate Work Function and Their Effect on Device Characteristics
- Fabrication of a Vertical-Channel Double-Gate Metal–Oxide–Semiconductor Field-Effect Transistor Using a Neutral Beam Etching
- Investigation of Thermal Stability of TiN Film Formed by Atomic Layer Deposition Using Tetrakis(dimethylamino)titanium Precursor for Metal-Gate Metal–Oxide–Semiconductor Field-Effect Transistor
- Investigation of Low-Energy Tilted Ion Implantation for Fin-Type Double-Gate Metal–Oxide–Semiconductor Field-Effect Transistor Extension Doping
- Nanoscale Wet Etching of Physical-Vapor-Deposited Titanium Nitride and Its Application to Sub-30-nm-Gate-Length Fin-Type Double-Gate Metal–Oxide–Semiconductor Field-Effect Transistor Fabrication
- Experimental Study of Floating-Gate-Type MetalOxideSemiconductor Capacitors with Nanosize Triangular Cross-Sectional Tunnel Areas for Low Operating Voltage Flash Memory Application (Special Issue : Microprocesses and Nanotechnology)
- Fabrication and Characterization of NOR-Type Tri-Gate Flash Memory with Improved Inter-Poly Dielectric Layer by Rapid Thermal Oxidation (Special Issue : Microprocesses and Nanotechnology)
- Fabrication of Floating-Gate-Type Fin-Channel Double- and Tri-Gate Flash Memories and Comparative Study of Their Electrical Characteristics
- Experimental Comparisons between Tetrakis(dimethylamino)titanium Precursor-Based Atomic-Layer-Deposited and Physical-Vapor-Deposited Titanium--Nitride Gate for High-Performance Fin-Type Metal--Oxide--Semiconductor Field-Effect Transistors
- Investigation of N-Channel Triple-Gate Metal–Oxide–Semiconductor Field-Effect Transistors on (100) Silicon On Insulator Substrate
- Fin-Type Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistors Fabricated by Orientation-Dependent Etching and Electron Beam Lithography
- Cross-Sectional Channel Shape Dependence of Short-Channel Effects in Fin-Type Double-Gate Metal Oxide Semiconductor Field-Effect Transistors
- New Fabrication Technology of Fin Field Effect Transistors Using Neutral-Beam Etching
- Experimental Study of Effective Carrier Mobility of Multi-Fin-Type Double-Gate Metal–Oxide–Semiconductor Field-Effect Transistors with (111) Channel Surface Fabricated by Orientation-Dependent Wet Etching
- 1/f Noise Characteristics of Fin-Type Field-Effect Transistors in Saturation Region
- Gate Structure Dependence of Variability in Polycrystalline Silicon Fin-Channel Flash Memories
- Independent-Double-Gate FinFET SRAM Technology
- Gate Structure Dependence of Variability in Polycrystalline Silicon Fin-Channel Flash Memories (Special Issue : Microprocesses and Nanotechnology)
- Experimental study of three-dimensional fin-channel charge trapping flash memories with titanium nitride and polycrystalline silicon gates