Formation of Several-Micrometer-Thick Polycrystalline Silicon Films on Soda Lime Glass by Flash Lamp Annealing
スポンサーリンク
概要
- 論文の詳細を見る
We have succeeded in forming polycrystalline silicon (poly-Si) films with thicknesses of over 4 μm on soda lime glass by flash lamp annealing (FLA) of precursor amorphous Si (a-Si) films deposited by catalytic chemical vapor deposition (Cat-CVD). The insertion of Cr thin films between glass substrates and a-Si significantly improves the adhesion of Si films to the glass substrates, resulting in uniform crystallization of a-Si in $20\times 20$ mm2 area. Several types of substrate, such as quartz substrates, are also used instead of soda lime glass to elucidate the effects of the properties of glass substrates on formation of the poly-Si films. a-Si films tend to be crystallized under lower irradiance than those on quartz glass substrates, which can be described by the lower thermal conductivity and the thermal diffusion length of soda lime glass. Raman spectra of the poly-Si films on soda lime glass show high crystallinity close to unity. The utilization of soda lime glass with poor thermal resistivity is of great importance for the cost-effective mass production of thin-film poly-Si solar cells.
- 2008-11-25
著者
-
Matsumura Hideki
Japan Advanced Inst. Sci. And Technol. (jaist) Ishikawa Jpn
-
Ohdaira Keisuke
Japan Advanced Inst. Of Sci. And Technol. (jaist) Asahidai Nomi-shi Ishikawa-ken 923-1292 Jpn
-
Fujiwara Tomoko
Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
-
Endo Yohei
Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
-
Nishizaki Shogo
Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
関連論文
- Selection of material for the back electrodes of thin-film solar cells using polycrystalline silicon films formed by flash lamp annealing (Special issue: Solid state devices and materials)
- Formation of Several-Micrometer-Thick Polycrystalline Silicon Films on Soda Lime Glass by Flash Lamp Annealing
- Study on stability of amorphous silicon thin-film transistors prepared by catalytic chemical vapor deposition
- Formation of Highly Uniform Micrometer-Order-Thick Polycrystalline Silicon Films by Flash Lamp Annealing of Amorphous Silicon on Glass Substrate
- High-Quality Polycrystalline Silicon Films with Minority Carrier Lifetimes over 5 μs Formed by Flash Lamp Annealing of Precursor Amorphous Silicon Films Prepared by Catalytic Chemical Vapor Deposition
- High-Efficiency Concave and Conventional Solar Cell Integration System Using Focused Reflected Light
- Analysis of the Dark-Current Density in Solar Cells Based on Multicrystalline SiGe
- Floating Zone Growth of Si Bicrystals Using Seed Crystals with Artificially Designed Grain Boundary Configuration
- Theoretical Study for Drastic Improvement of Solar Cell Efficiency
- Catalytic CVD processes of oxidizing species and the prevention of oxidization of heated tungsten filaments by H₂
- Air-Stable p-Type and n-Type Carbon Nanotube Field-Effect Transistors with Top-Gate Structure on SiN_x Passivation Films Formed by Catalytic Chemical Vapor Deposition
- Preparation of Low-Stress SiN_x Films by Catalytic Chemical Vapor Deposition at Low Temperatures
- Improvement of Deposition Rate by Sandblasting of Tungsten Wire in Catalytic Chemical Vapor Deposition
- Moisture-Resistive Properties of SiN_x Films Prepared by Catalytic Chemical Vapor Deposition below 100℃ for Flexible Organic Light-Emitting Diode Displays
- Quantification of Gas-Phase H-Atom Number Density by Tungsten Phosphate Glass
- Effect of Atomic Hydrogen on Preparation of Highly Moisture-Resistive SiN_x Films at Low Substrate Temperatures
- Highly Moisture-Resistive SiN_x Films Prepared by Catalytic Chemical Vapor Deposition
- Low-Resistivity Phosphorus-Doped Polycrystalline Silicon Thin Films Formed by Catalytic Chemical Vapor Deposition and Successive Rapid Thermal Annealing
- Catalytic Chemical Sputtering: A Novel Method for Obtaining Large-Grain Polycrystalline Silicon : Surfaces, Interfaces, and Films
- Control of Polycrystalline Silicon Structure by the Two-Step Deposition Method
- Annealing Effect of Pb(Zr, Ti)O_3 Ferroelectric Capacitor in Active Ammonia Gas Cracked by Catalytic Chemical Vapor Deposition System
- Role of Hydrogen in Polycrystalline Si by Excimer Laser Annealing
- Drastic Improvement of Minority Carrier Lifetimes Observed in Hydrogen-Passivated Flash-Lamp-Crystallized Polycrystalline Silicon Films
- Optical Absorption Properties of Indium-Doped Thin Crystalline Silicon Films
- Effect of Hydrogen on Secondary Grain Growth of Polycrystalline Silicon Films by Excimer Laser Annealing in Low-Temperature Process
- Effective Interaction for the Jastrow Model Wave Function with the Transcorrelated Method(Nuclear Physics)
- Hall Mobility of Low-Temperature-Deposited Polysilicon Films by Catalytic Chemical Vapor Deposition Method
- Microstructure of Polycrystalline Silicon Films Formed through Explosive Crystallization Induced by Flash Lamp Annealing
- Radical Species Formed by the Catalytic Decomposition of NH3 on Heated W Surfaces
- Effects of High Nitrogen Pressure and Thermal Treatment on Adhesion to Amorphous Silicon/Silicon Nitride/Polyethersulfone Substrate during Excimer Laser Annealing
- Coating techniques of metal chambers for remote catalytic chemical vapor deposition applications
- Selection of Material for the Back Electrodes of Thin-Film Solar Cells Using Polycrystalline Silicon Films Formed by Flash Lamp Annealing
- Formation of Several-Micrometer-Thick Polycrystalline Silicon Films on Soda Lime Glass by Flash Lamp Annealing
- Distribution of Phosphorus Atoms and Carrier Concentrations in Single-Crystal Silicon Doped by Catalytically Generated Phosphorous Radicals
- Formation of Highly Uniform Micrometer-Order-Thick Polycrystalline Silicon Films by Flash Lamp Annealing of Amorphous Silicon on Glass Substrate
- Improvement of Deposition Rate by Sandblasting of Tungsten Wire in Catalytic Chemical Vapor Deposition
- Effect of Radical-Doped n+ Back Surface Field Layers on the Effective Minority Carrier Lifetimes of Crystalline Silicon with Amorphous Silicon Passivation Layers Deposited by Catalytic Chemical Vapor Deposition
- Large-Grain Polycrystalline Silicon Films Formed through Flash-Lamp-Induced Explosive Crystallization
- Low Temperature Phosphorus Doping in Silicon Using Catalytically Generated Radicals
- Preparation of Low-Stress SiNx Films by Catalytic Chemical Vapor Deposition at Low Temperatures
- High-Quality Polycrystalline Silicon Films with Minority Carrier Lifetimes over 5 μs Formed by Flash Lamp Annealing of Precursor Amorphous Silicon Films Prepared by Catalytic Chemical Vapor Deposition
- Moisture-Resistive Properties of SiNx Films Prepared by Catalytic Chemical Vapor Deposition below 100°C for Flexible Organic Light-Emitting Diode Displays
- Defect Termination of Flash-Lamp-Crystallized Large-Grain Polycrystalline Silicon Films by High-Pressure Water Vapor Annealing