Effect of Radical-Doped n+ Back Surface Field Layers on the Effective Minority Carrier Lifetimes of Crystalline Silicon with Amorphous Silicon Passivation Layers Deposited by Catalytic Chemical Vapor Deposition
スポンサーリンク
概要
- 論文の詳細を見る
To reduce surface recombination at an amorphous silicon (a-Si)/crystalline silicon (c-Si) interface in heterojunction solar cells, a thin phosphorus-doped back surface field (BSF) layer is applied to c-Si. Thin BSF layers are doped at temperatures lower than 350 °C by radical doping. The reduction in the surface recombination velocity of n-type c-Si is investigated by comparing the effective minority carrier lifetimes of c-Si samples with and without doping. Using radical-doped BSF layers, the effective minority carrier lifetimes of the samples with the thin intrinsic a-Si passivation layers increase significantly. The change in effective minority carrier lifetime under the BSF layer doping condition is also investigated. An effective minority carrier lifetime of 1.6 ms is observed in the radical-doped sample with the 6-nm-thick intrinsic a-Si passivation layer. The high carrier concentration of the radical-doped BSF layers can also decrease the contact resistivity to a metal electrode. Therefore, the radical-doped BSF layers can be utilized for passivation and ohmic contact formation on the back surface of the heterojunction solar cells.
- 2012-10-25
著者
-
Matsumura Hideki
Japan Advanced Inst. Sci. And Technol. (jaist) Ishikawa Jpn
-
Ohdaira Keisuke
Green Devices Research Center, Japan Advanced Institute of Science and Technology (JAIST), Nomi, Ishikawa 923-1292, Japan
-
Koyama Koichi
Japan Advanced Institute of Science and Technology (JAIST), Nomi, Ishikawa 923-1292, Japan
-
Hayakawa Taro
Japan Advanced Institute of Science and Technology (JAIST), Nomi, Ishikawa 923-1292, Japan
-
Ohta Tatsunori
Japan Advanced Institute of Science and Technology (JAIST), Nomi, Ishikawa 923-1292, Japan
-
Nakashima Yuki
Japan Advanced Institute of Science and Technology (JAIST), Nomi, Ishikawa 923-1292, Japan
関連論文
- Theoretical Study for Drastic Improvement of Solar Cell Efficiency
- Catalytic CVD processes of oxidizing species and the prevention of oxidization of heated tungsten filaments by H₂
- Air-Stable p-Type and n-Type Carbon Nanotube Field-Effect Transistors with Top-Gate Structure on SiN_x Passivation Films Formed by Catalytic Chemical Vapor Deposition
- Preparation of Low-Stress SiN_x Films by Catalytic Chemical Vapor Deposition at Low Temperatures
- Improvement of Deposition Rate by Sandblasting of Tungsten Wire in Catalytic Chemical Vapor Deposition
- Moisture-Resistive Properties of SiN_x Films Prepared by Catalytic Chemical Vapor Deposition below 100℃ for Flexible Organic Light-Emitting Diode Displays
- Quantification of Gas-Phase H-Atom Number Density by Tungsten Phosphate Glass
- Effect of Atomic Hydrogen on Preparation of Highly Moisture-Resistive SiN_x Films at Low Substrate Temperatures
- Highly Moisture-Resistive SiN_x Films Prepared by Catalytic Chemical Vapor Deposition
- Low-Resistivity Phosphorus-Doped Polycrystalline Silicon Thin Films Formed by Catalytic Chemical Vapor Deposition and Successive Rapid Thermal Annealing
- Catalytic Chemical Sputtering: A Novel Method for Obtaining Large-Grain Polycrystalline Silicon : Surfaces, Interfaces, and Films
- Control of Polycrystalline Silicon Structure by the Two-Step Deposition Method
- Annealing Effect of Pb(Zr, Ti)O_3 Ferroelectric Capacitor in Active Ammonia Gas Cracked by Catalytic Chemical Vapor Deposition System
- Role of Hydrogen in Polycrystalline Si by Excimer Laser Annealing
- Drastic Improvement of Minority Carrier Lifetimes Observed in Hydrogen-Passivated Flash-Lamp-Crystallized Polycrystalline Silicon Films
- Optical Absorption Properties of Indium-Doped Thin Crystalline Silicon Films
- Effect of Hydrogen on Secondary Grain Growth of Polycrystalline Silicon Films by Excimer Laser Annealing in Low-Temperature Process
- Effective Interaction for the Jastrow Model Wave Function with the Transcorrelated Method(Nuclear Physics)
- Hall Mobility of Low-Temperature-Deposited Polysilicon Films by Catalytic Chemical Vapor Deposition Method
- Microstructure of Polycrystalline Silicon Films Formed through Explosive Crystallization Induced by Flash Lamp Annealing
- Radical Species Formed by the Catalytic Decomposition of NH3 on Heated W Surfaces
- Effects of High Nitrogen Pressure and Thermal Treatment on Adhesion to Amorphous Silicon/Silicon Nitride/Polyethersulfone Substrate during Excimer Laser Annealing
- Coating techniques of metal chambers for remote catalytic chemical vapor deposition applications
- Selection of Material for the Back Electrodes of Thin-Film Solar Cells Using Polycrystalline Silicon Films Formed by Flash Lamp Annealing
- Formation of Several-Micrometer-Thick Polycrystalline Silicon Films on Soda Lime Glass by Flash Lamp Annealing
- Distribution of Phosphorus Atoms and Carrier Concentrations in Single-Crystal Silicon Doped by Catalytically Generated Phosphorous Radicals
- Formation of Highly Uniform Micrometer-Order-Thick Polycrystalline Silicon Films by Flash Lamp Annealing of Amorphous Silicon on Glass Substrate
- Improvement of Deposition Rate by Sandblasting of Tungsten Wire in Catalytic Chemical Vapor Deposition
- Effect of Radical-Doped n+ Back Surface Field Layers on the Effective Minority Carrier Lifetimes of Crystalline Silicon with Amorphous Silicon Passivation Layers Deposited by Catalytic Chemical Vapor Deposition
- Large-Grain Polycrystalline Silicon Films Formed through Flash-Lamp-Induced Explosive Crystallization
- Low Temperature Phosphorus Doping in Silicon Using Catalytically Generated Radicals
- Preparation of Low-Stress SiNx Films by Catalytic Chemical Vapor Deposition at Low Temperatures
- High-Quality Polycrystalline Silicon Films with Minority Carrier Lifetimes over 5 μs Formed by Flash Lamp Annealing of Precursor Amorphous Silicon Films Prepared by Catalytic Chemical Vapor Deposition
- Moisture-Resistive Properties of SiNx Films Prepared by Catalytic Chemical Vapor Deposition below 100°C for Flexible Organic Light-Emitting Diode Displays