Formation of Highly Uniform Micrometer-Order-Thick Polycrystalline Silicon Films by Flash Lamp Annealing of Amorphous Silicon on Glass Substrate
スポンサーリンク
概要
- 論文の詳細を見る
Polycrystalline silicon (poly-Si) films as thick as 4.5 μm are prepared by flash lamp annealing (FLA) of amorphous silicon (a-Si) films without thermal damage onto glass substrates. The a-Si films are deposited by catalytic chemical vapor deposition (Cat-CVD) at 320 ℃. Since the hydrogen content in Cat-CVD a-Si films is as low as 3 at. %, they are easily converted to poly-Si without any dehydrogenation treatment. Chromium (Cr) films 60 nm thick are coated onto glass substrates to achieve high area uniformity of poly-Si formation. Secondary ion mass spectroscopy (SIMS) reveals that no diffused Cr atoms are detected inside poly-Si films and that crystallization is not the well-known metal-induced crystallization. Raman spectra from the poly-Si films show high crystallinity close to 1, and the photoluminescence (PL) spectrum demonstrates clear band-to-band transition, indicating the formation of device-quality poly-Si by FLA of Cat-CVD a-Si.
- The Japan Society of Applied Physicsの論文
- 2007-12-06
著者
-
Ohdaira Keisuke
Japan Advanced Inst. Sci. And Technol. (jaist) Ishikawa Jpn
-
Ohdaira Keisuke
Japan Advanced Inst. Of Sci. And Technol. (jaist) Asahidai Nomi-shi Ishikawa-ken 923-1292 Jpn
関連論文
- Selection of material for the back electrodes of thin-film solar cells using polycrystalline silicon films formed by flash lamp annealing (Special issue: Solid state devices and materials)
- Formation of Several-Micrometer-Thick Polycrystalline Silicon Films on Soda Lime Glass by Flash Lamp Annealing
- Study on stability of amorphous silicon thin-film transistors prepared by catalytic chemical vapor deposition
- Formation of Highly Uniform Micrometer-Order-Thick Polycrystalline Silicon Films by Flash Lamp Annealing of Amorphous Silicon on Glass Substrate
- High-Quality Polycrystalline Silicon Films with Minority Carrier Lifetimes over 5 μs Formed by Flash Lamp Annealing of Precursor Amorphous Silicon Films Prepared by Catalytic Chemical Vapor Deposition
- High-Efficiency Concave and Conventional Solar Cell Integration System Using Focused Reflected Light
- Analysis of the Dark-Current Density in Solar Cells Based on Multicrystalline SiGe
- Floating Zone Growth of Si Bicrystals Using Seed Crystals with Artificially Designed Grain Boundary Configuration
- Drastic Improvement of Minority Carrier Lifetimes Observed in Hydrogen-Passivated Flash-Lamp-Crystallized Polycrystalline Silicon Films
- Microstructure of Polycrystalline Silicon Films Formed through Explosive Crystallization Induced by Flash Lamp Annealing
- Selection of Material for the Back Electrodes of Thin-Film Solar Cells Using Polycrystalline Silicon Films Formed by Flash Lamp Annealing
- Formation of Several-Micrometer-Thick Polycrystalline Silicon Films on Soda Lime Glass by Flash Lamp Annealing
- Formation of Highly Uniform Micrometer-Order-Thick Polycrystalline Silicon Films by Flash Lamp Annealing of Amorphous Silicon on Glass Substrate
- Large-Grain Polycrystalline Silicon Films Formed through Flash-Lamp-Induced Explosive Crystallization
- Low Temperature Phosphorus Doping in Silicon Using Catalytically Generated Radicals
- High-Quality Polycrystalline Silicon Films with Minority Carrier Lifetimes over 5 μs Formed by Flash Lamp Annealing of Precursor Amorphous Silicon Films Prepared by Catalytic Chemical Vapor Deposition
- Defect Termination of Flash-Lamp-Crystallized Large-Grain Polycrystalline Silicon Films by High-Pressure Water Vapor Annealing