Properties of α-Amino-ε-caprolactam Racemasefrom Achromobacter obae
スポンサーリンク
概要
- 論文の詳細を見る
α-Amino-ε-caprolactam racemase, which occurs in the cytoplasmic fraction of Achromobacter obae, has been purified to homogeneity. It has a monomericstructure with a molecular weight of approximately 50, 000. The absorption spectrum of the enzymeexhibits maximaat 280 and 412 nm at pH 7.3, and is independent of pH from 6.0 to 8.0. One mole ofpyridoxal 5-phosphate is bound per mol of the enzyme.Incubation of the enzymewith hydroxylamineresulted in the formation of the apoenzyme.d- and L-a-Amino-a-caprolactamsare the only substrates. Themaximumactivity is found at pH 8.8 for both the isomers. Michaelis constants are as follows: 8him for D-α-amino-ε-caprolactam, 6 mMfor L-α-amino-e-caprolactam and 2.1×10-7 M for pyridoxal 5-phosphate. The enzyme is inhibited significantly by CuSO4, HgCl2, thiol reagents such as N-ethylmaleimide and p-chloromercuribenzoate, and carbonyl reagents (e.g., phenylhydrazine and hydroxylamine). a- Amino-e-caprolactam racemase catalyzes the α-proton exchange of the substrate with deuteron during racemization in deuterium oxide.
- 社団法人 日本農芸化学会の論文
著者
-
Esaki N
Kyoto Univ. Kyoto Jpn
-
Esaki Nobuyoshi
Institute for Chemical Research, Kyoto University
-
AHMED Syed
Institute for Chemical Research, Kyoto University
-
TANAKA Hidehiko
Institute for Chemical Research, Kyoto University
-
SODA Kenji
Institute for Chemical Research, Kyoto University
-
Soda Kenji
Institute For Chemical Resarch Kyoto University
-
Esaki Nobuyoshi
Institute For Chemical Resarch Kyoto University
関連論文
- Production of (S)-2-Chloropropionate by Asymmetric Reduction of 2-Chloroacrylate with 2-Haloacrylate Reductase Coupled with Glucose Dehydrogenase(BIOCHEMICAL ENGINEERING)
- Serine Racemase with Catalytically Active Lysinoalanyl Residue
- Amino Acid Racemases : Functions and Mechanisms
- Gene Cloning, Purification, and Characterization of 2, 3-Diaminopropionate Ammonia-lyase from Escherichia coli(Biochemistry & Molecular Biology)
- Stereospecificity for the Hydrogen Transfer of Pyridoxal Enzyme Reactions
- Gene Cloning, Purification, and Characterization of Two Cyanobacterial NifS Homologs Driving Iron-Sulfur Cluster Formation
- Stereochemistry of the Transamination Reaction Catalyzed by Aminodeoxychorismate Lyase from Escherichia coli: Close Relationship between Fold Type and Stereochemistry
- Three-Dimensional Structure of 4-Amino-4-Deoxychorismate Lyase from Escherichia coli
- Kinetic and Mutational Studies of Three NifS Homologs from Esherichia coli: Mechanistic Difference between L-Cysteine Desulfurase and L-Selenocysteine Lyase Reactions
- A Novel Zinc-containing α-Keto Ester Reductase from Actinomycete : An Approach Based on Protein Chemistry and Bioinformatics
- Novel Mechanism of Enzymatic Hydrolysis Involving Cyanoalanine Intermediate Revealed by Mass Spectrometric Monitoring of an Enzyme Reaction (MOLECULAR BIOFUNCTION-Molecular Microbial Science)
- Reaction Mechanism of DL-2-Haloacid Dehalogenase from Pseudomonas sp. 113: Hydrolytic Dehalogenation Not Involving Enzyme-Substrate Ester Intermediate (MOLECULAR BIOFUNCTION-Molecular Microbial Science)
- Non-stereospecific Transamination Catalyzed by Pyridoxal Phosphate-dependent Amino Acid Racemases of Broad Substrate Specificity (MOLECULAR BIOFUNCTION-Molecular Microbial Science)
- Overexpression and Rapid Purification of L-2-Halo Acid Dehalogenase of Pseudomonas putida No. 109
- Structure and Function of Alanine Racemase (Commemoration Issue Dedicated to Professor Shigeo Tanimoto On the Occation of His Retirement)
- Actions of S-(N-Methylthiocarbamoyl)-L-cysteine and Its Oxygen Analog on Pyridoxal Enzymes (Commemoration Issue Dedicated to Professor Eiichi Fujita on the Occasion of his Retirement)
- Mechanism of Inactivation of α-Amino-ε-caprolactam Racemase by α-Amino-δ -valerolactam
- Synthesis of Selenocystine and Selenohomocystine with O-Acetylhomoserine Sulfhydrylase
- Cloning and Expression of the Pseudomonas Gene for Utilization of D-Leucine in Escherichia coli
- Assay of L-Methionine γ-Lyase with N-(9-Acridinyl)maleimide
- Synthesis of D-α-Aminobutyrate with Methionine γ-Lyase and D-Amino Acid Aminotransferase
- Action of S-Carbamoyl and S-Thiocarbamoyl Derivatives of L-Cysteine on L-Amino Acid Oxidase
- Inactivation of Amino Acid Racemase by S-(N-Methylthiocarbamoyl)- D, L-cysteine
- Purification and Properties of α-Hydroxyglutarate Dehydrogenase of Peptococcus aerogenes
- Reactions of O-Substituted L-Homoserines Catalyzed by L-Methionine y-Lyase and Their Mechanism
- Purification and Properties of L-Methionine γ-Lyase from Aeromonas sp.
- Synthesis of Amino Acids with Pyridoxal 5'-phosphate Enzymes (Commemoration Issue Dedicated to Professor Yuzo Inouye on the Occasion of his Retirement)
- Enzymatic Synthesis of S-Substituted L-Cysteines with Tryptophan Synthase of Escherichia coli
- Racemization of α-Amino-δ-valerolactam Catalyzed by α-Aminog-ε-caprolactam Racemase from Achromobacter obae
- Properties of α-Amino-ε-caprolactam Racemasefrom Achromobacter obae
- Production and Stabilization of a-Amino-E-caprolactam Racemase from Achromobacter obae
- X-Ray Structure of a Reaction Intermediate of L-2-Haloacid Dehalogenase with L-2-Chloropropionamid
- Production of New Tricarboxylic Acid Anhydrides from Stearic Acid by Pseudomonas cepacia A-1419
- Biotransformation of Oleic Acid by Alcaligenes sp. 5-18,a Bacterium Tolerant to High Concentrations of Oleic Acid
- Biotransformation of Oleic Acid by Micrococcus luteus Cells
- Transformation of Oleic Acid and Its Esters by Sarcina lutea(Microbiology & Fermentation Industry)
- Identification of Proteins Interacting with Selenocysteine Lyase
- Enzymatic Synthesis of L-Pipecolic Acid by Δ^1-Piperideine-2-carboxylate Reductase from Pseudomonas putida
- Selenoprotein Biosynthesis and Selenium-Specific Enzymes (特集1:若手が拓く微量元素研究の最前線)
- Protein Interaction between Selenophosphate Synthetase and IscS
- RNAi-mediated knock down of mammalian selenocysteine lyase
- A New Family of NAD(P)H-Dependent Oxidoreductases Distinct from Conventional Rossmann-Fold Proteins
- Network of Protein-Protein Interactions among Iron-Sulfur Cluster Assembly Proteins in Escherichia coli
- Structure of External Aldimine of Escherichia coli CsdB, an IscS/NifS Homolog: Implications for Its Specificity toward Selenocysteine
- Tyrosine 265 of Alanine Racemase Serves as a Base Abstracting α-Hydrogen from L-Alanine: The Counterpart Residue to Lysine 39 Specific to D-Alanine
- Comprehensive Site-Directed Mutagenesis of L-2-Halo Acid Dehalogenase to Probe Catalytic Amino Acid Residues
- Two Kinds of 2-Halo Acid Dehalogenases from Pseudomonas sp. YL Induced by 2-Chloroacrylate and 2-Chloropropionate
- Alanine Racemase from an Acidophile, Acidiphilium organovorum : Purification and Characterization
- Role of Tyrosine 265 of Alanine Racemase from Bacillus stearothermophilus
- The Distribution of Phosphatidyl-D-serine in the Rat
- Primary Structure and Properties of Bacterial Formate Dehydrogenase From Moraxella sp C-1
- Thermostable Ornithine Aminotransferase from Bacillus sp. YM- 2: Purification and Characterization
- Structural Analysis of the L-Methionine γ-Lyase Gene from Pseudomonas putida^1
- In Vivo Effect of GroESL on the Folding of Glutamate Racemase of Escherichia coli
- Large-Scale Production of Thermostable Alanine Dehydrogenase from Recombinant Cells
- 411 Enzymatic Dehalogenation of 2-Halo Acids in Nonaqueous Medium
- Characterization of Human Selenocysteine Synthase Involved in Selenoprotein Biosynthesis
- Functional Analysis of Two Homologous Mouse Selenophosphate Synthetases
- DnaK from Vibrio proteolyticus : Complementation of a dnaK-Null Mutant of Escherichia coli and the Role of Its ATPase Domain (Enzymology, Protein Engineering, and Enzyme Technology)
- Kinetics of Thermostable Alanine Racemase of Bacillus stearothermophilus
- Lysyl-tRNA Synthetase of Bacillus stearothermophilus Molecular Cloning and Expression of the Gene
- Crystal Structure of the Pyridoxal 5'-phosphate Dependent L-Methionine γ-Lyase from Pseudomonas putida
- Structure of the Antitumour Enzyme L-Methionine γ-Lyase from Pseudomonas putida at 1.8A Resolution
- Role of Tyrosine 114 of L-Methionine γ-lyase from Pseudomonas putida
- Transamination as a Side-Reaction catalyzed by Alanine Racemase of Bacillus stearothermophilus
- Construction and Properties of a Fragmentary D-Amino Acid Aminotransferase
- Stereospecific Labeling at α-Position of Phenylalanine and Phenylglycine with Amino Acid Racemase
- Compensation for D-Glutamate Auxotrophy of Escherichia coli WM335 by D-Amino Acid Aminotransferase Gene and Regulation of murI Expression
- Mutation of Arginine 98, Which Serves as a Substrate-Recognition Site of D-Amino Acid Aminotransferase, Can Be Partly Compensated for by Mutation of Tyrosine 88 to an Arginyl Residue
- Cloning and Expression of the Glutamate Racemase Gene of Bacillus pumilus^1
- Conversion of α-Keto Acids to D-Amino Acids by Coupling of Four Enzyme Reactions
- Glutamate Racemase of E. coli : Recharacterization of the Activation by UDP-N -Acetylmuramoyl-L-Alanine
- Reconstitution of Fragmentary Form of Thermostable Alanine Racemase
- A Novel NADH-Dependent Carbonyl Reductase from Kluyveromyces aestuarii and Comparison of NADH-Regeneration System for the Synthesis of Ethyl (S)-4-Chloro-3-hydroxybutanoate
- Catalytic Action of L-Methionine γ-Lyase on 4-Azaleucine(Biological Chemistry)
- Chemical Modification of Cysteine Residues of _L-Methionine γ-Lyase(Biological Chemistry)
- Effects of Pyridoxal 5'-Phosphate on the Refolding of Aspartate Aminotransferase
- Stereospeciticity for the Hydrogen Transfer and Molecular Evolution of Pyridoxal Enzymes
- Inactivation of Glutamate Racemase of Pediococcus pentosaceus with L-Serine O-Sulfate
- Thermolabile Alanine Racemase from a Psychrotroph, Pseudomonas fluorescens : Purification and Properties
- Total Conversion of Racemic Pipecolic Acid into the L-Enantiomer by a Combination of Enantiospecific Oxidation with D-Amino Acid Oxidase and Reduction with Sodium Borohydride
- Synthesis of L-Proline form the Racemate by Coupling of Enzymatic Enantiospecific Oxidation and Chemical Non-Enantiospecific Reduction
- Decomposition of L-Selenodjenkolate Catalyzed by S-Alkylcysteine α,β-Lyase(Biological Chemistry)
- Thermostable S-Alkylcysteine α,β-Lyase from a Thermophile : Purification and Properties(Biological Chemistry)
- Gene Cloning, Purification and Characterization of Thermostable Alanine Dehydrogenase of Bacillus stearothermophilus
- The Role of Cysteine 116 in the Active Site of the Antitumor Enzyme L-Methionine γ-Lyase from Pseudomonas putida
- The Role of Cysteine 116 in the Active Site of the Antitumor Enzyme L-Methionine γ-Lyase from Pseudomonas putida
- The Distribution of Phosphatidyl-D-serine in the Rat
- Selenocysteine Is Selectively Taken Up by Red Blood Cells
- Identification of Proteins Interacting with Selenocysteine Lyase
- Expression analysis of mammalian selenocysteine lyase
- Determination by ^1H-NMR of the Stereospecificity of NAD-dependent Plant L-Histidinol Dehydrogenase for Nicotinamide C-4 Hydrogen Transfer
- Bus Serialization for Reducing Power Consumption(Processor Architecture)
- キレート形成能をもつコウジ酸の新しいアミノ酸誘導体 : 合成と性質
- Protein Interaction between Selenocysteine Lyase and MUP-I
- The C_3-N Bond Cleavage of 2-Amino-3-(N-substituted-amino)-propionic Acids Catalyzed by L-Methionine γ-Lyase(Biological Chemistry)
- Mammalian Selenocysteine Lyase Is Involved in Selenoprotein Biosynthesis
- Bus Serialization for Reducing Power Consumption
- Bus Serialization for Reducing Power Consumption
- Degradation of L-djenkolate catalyzed by S-alkylcysteine .ALPHA.,.BETA.-lyase from Pseudomonas putida.