Effects of Si Deposition on AlGaN Barrier Surfaces in GaN Heterostructure Field-Effect Transistors
スポンサーリンク
概要
- 論文の詳細を見る
We observed that Si deposition on AlGaN/GaN heterostructure field-effect transistors (HFETs) can increase the two-dimensional electron gas (2DEG) density up to a level comparable to that achieved as a result of SiN passivation. Silicon atoms located at the AlGaN barrier surface might act as positively ionized donors, which can partially neutralize the negative polarization charges of the AlGaN surface and thereby increase the 2DEG density through polarization effects. This phenomenon is not only interesting from the scientific point of view, but also promising from the practical point of view. By using a 2-nm-thick Si insert layer in the ohmic contact, we obtained a contact resistance value 2.5 times lower than that obtained without the Si insert layer (conventional ohmic contact). GaN HFETs with Si deposited on the AlGaN barrier surface exhibited excellent device characteristics owing to a reduction in the source and drain sheet resistances and the ohmic contact resistances.
- Japan Society of Applied Physicsの論文
- 2008-07-25
著者
-
MATSUI Toshiaki
National Institute of Info. & Com. Tech.
-
Hirose Nobumitsu
National Inst. Of Information And Communications Technology
-
MIMURA Takashi
National Institute of Information and Communications Technology
-
ONOJIMA Norio
National Institute of Information and Communications Technology (NICT)
関連論文
- Effect of flatness of heterointerfaces on device performance of InP-based HEMTs
- Effect of Bottom SiN Thickness for AlGaN/GaN Metal-Insulator-Semiconductor High Electron Mobility Transistors Using SiN/SiO_2/SiN Triple-Layer Insulators
- AlGaN/GaN MIS-HEMTs Fabricated Using SiN/SiO_2/SiN Triple-Layer Insulators
- Strain Distribution Analysis of Sputter-Formed Strained Si by Tip-Enhanced Raman Spectroscopy
- Si/Ge Hole-Tunneling Double-Barrier Resonant Tunneling Diodes Formed on Sputtered Flat Ge Layers
- Monte Carlo Simulations of Electron Transport in In0.52Al0.48As/In0.75Ga0.25As High Electron Mobility Transistors at 300 and 16 K
- E-Band Low-Noise Amplifier MMICs Using Nanogate InGaAs/InAlAs HEMT Technology
- Effect of Gate–Drain Spacing for In0.52Al0.48As/In0.53Ga0.47As High Electron Mobility Transistors Studied by Monte Carlo Simulations
- Development of High-Frequency GaN HFETs for Millimeter-Wave Applications
- AlGaN/GaN Heterostructure Field-Effect Transistors on 4H-SiC Substrates with Current-Gain Cutoff Frequency of 190 GHz
- Strain-Relaxed Si_Ge_x and Strained Si Grown by Sputter Epitaxy
- 30-nm-Gate AlGaN/GaN Heterostructure Field-Effect Transistors with a Current-Gain Cutoff Frequency of 181 GHz
- InAlN/GaN Heterostructure Field-Effect Transistors Grown by Plasma-Assisted Molecular-Beam Epitaxy
- Ge Flat Layer Growth on Heavily Phosphorus-Doped Si(001) by Sputter Epitaxy
- Effect of Gate-Recess Structure on Electron Transport in InP-Based High Electron Mobility Transistors Studied by Monte Carlo Simulations
- High Off-state Breakdown Voltage 60-nm-Long-Gate AlGaN/GaN Heterostructure Field-Effect Transistors with AlGaN Back-Barrier
- High Performance AlGaN/GaN Metal–Insulator–Semiconductor High Electron Mobility Transistors Fabricated Using SiN/SiO2/SiN Triple-Layer Insulators
- Effects of Heterointerface Flatness on Device Performance of InP-Based High Electron Mobility Transistor
- High-Performance Short-Gate InAlN/GaN Heterostructure Field-Effect Transistors
- Strain-Relaxed Si1-xGex and Strained Si Grown by Sputter Epitaxy
- Effect of Bottom SiN Thickness for AlGaN/GaN Metal–Insulator–Semiconductor High Electron Mobility Transistors Using SiN/SiO2/SiN Triple-Layer Insulators
- Erratum: "High-Performance Short-Gate InAlN/GaN Heterostructure Field-Effect Transistors"
- Effects of Si Deposition on AlGaN Barrier Surfaces in GaN Heterostructure Field-Effect Transistors
- AlGaN/GaN Heterostructure Field-Effect Transistors with Current Gain Cut-off Frequency of 152 GHz on Sapphire Substrates
- Barrier Thickness Dependence of Electrical Properties and DC Device Characteristics of AlGaN/GaN Heterostructure Field-Effect Transistors Grown by Plasma-Assisted Molecular-Beam Epitaxy