Improvements of N-Side-up GaN Light-Emitting Diodes Performance by Indium–Tin-Oxide/Al Mirror
スポンサーリンク
概要
- 論文の詳細を見る
An n-side-up vertical conducting GaN/mirror/Si light-emitting diode (LED) has been fabricated using a combination of wafer-bonding, laser lift-off, and surface texturing techniques. The indium–tin-oxide (ITO)/Al and Pd mirror were chosen to improve optical reflectivity and contact resistance with p-GaN. It was found that the LEDs with higher reflectivity mirrors present better optical properties. A GaN/ITO/Al/Si LED with surface texturing presents maximum luminance intensity with five times the magnitude of the original planar GaN/sapphire LED at 20 mA. The output power characteristic of a GaN/ITO/Al/Si LED is 8.9 mW, and it is higher than that of the original GaN/sapphire (4.5 mW) LED at 20 mA. With high current injection, the surface textured GaN/ITO/Al/Si LED also shows more stable luminance intensity and output power. The junction temperature is measured by the diode forward method. As the dc forward current increases to 200 mA, the junction temperatures of the GaN/mirror (ITO/Al)/Si and GaN/sapphire LED are 87 and 158 °C, respectively. Obviously, the Si substrate provides good thermal dissipation.
- Published by the Japan Society of Applied Physics through the Institute of Pure and Applied Physicsの論文
- 2006-04-30
著者
-
HUANG Shao-Hua
Department of Materials Engineering, National Chung Hsing University
-
Horng Ray-hua
Institute Of Precision Egineering National Chung Hsing University
-
Wuu Dong-Sing
Department of Electrical Engineering, Da-Yeh University
-
Wuu Dong-Sing
Department of Materials Engineering, National Chung Hsing University, Taichung, Taiwan 402, R.O.C.
-
Horng Ray-Hua
Institute of Precision Engineering, National Chung Hsing University, Taichung, Taiwan 402, R.O.C.
-
Horng Ray-Hua
Institute of Electrical Engineering, Da-Yeh University, Chang-Hwa 515, Taiwan, ROC
関連論文
- Improvements of N-Side-up GaN Light-Emitting Diodes Performance by Indium-Tin-Oxide/Al Mirror (Special Issue: Solid State Devices & Materials)
- Improvements in for N-Side-Up GaN/Mirror/Si LEDs Using High Reflective Ohmic Contacts
- Surface Texturing for Wafer-Bonded Vertical-Type GaN/Mirror/Si Light-Emitting Diodes
- Improvement in Extraction Efficiency of GaN-Based Light-Emitting Diodes with Textured Surface Layer by Natural Lithography
- Near-Ultraviolet InGaN/GaN Light-Emitting Diodes Grown on Patterned Sapphire Substrates
- Improvement in GaN-based light-emitting diodes by surface texturization with natural lithography
- GaN/Mirror/Si Light-Emitting Diodes for Vertical Current Injection by Laser Lift-Off and Wafer Bonding Techniques
- Characterization of Large-Area AlGaInP/Mirror/Si Light-Emitting Diodes Fabricated by Wafer Bonding
- High-Power AlGaInP Light-Emitting Diodes with Patterned Copper Substrates by Electroplating
- Ion-Implantation Treatment(Ba, Sr)TiO_3 Thin Films
- Etching Characteristics and Mechanism of Ba_Sr_TiO_3 Thin Films in an Inductively Coupled Plasma
- Thermal Stability of Co-Sputtered Ru-Ti Alloy Electrodes for Dynamic Random Access Memory Applications
- Rapid-Thermal-Processed BaTiO_3 Thin Films Deposited by Liquid-Source Misted Chemical Deposition
- Characterization of Thin-Film Electroluminescent Devices with Multiple Ta_2O_5 Interlayers Incorporated into SrS:Pr,Ce Phosphor
- Thinning Technology for Lithium Niobate Wafer by Surface Activated Bonding and Chemical Mechanical Polishing (Special Issue: Solid State Devices & Materials)
- Transparent barrier coatings for flexible organic light-emitting diode applications
- Effects of Transparent Conductive Layers on Characteristics of InGaN-Based Green Resonant-Cavity Light-Emitting Diodes
- High-Brightness Wafer-Bonded Indium-Tin Oxide/Light-Emitting Diode/Mirror/Si
- Wafer-Bonded AlGaInP/Au/AuBe/SiO_2/Si Light-Emitting Diodes
- Etching Characteristics of (Ba, Sr)TiO_3 Thin Films in an Inductively Coupled Plasma
- Wafer-Bonded 859-nm Vertical-Cavity Surface-Emitting Lasers on Si Substrate with Metal Mirror
- Near-Ultraviolet InGaN/GaN Light-Emitting Diodes Grown on Patterned Sapphire Substrates
- Characterization of Large-Area AlGaInP/Mirror/Si Light-Emitting Diodes Fabricated by Wafer Bonding
- Thinning Technology for Lithium Niobate Wafer by Surface Activated Bonding and Chemical Mechanical Polishing
- Effects of Transparent Conductive Layers on Characteristics of InGaN-Based Green Resonant-Cavity Light-Emitting Diodes
- High-Power AlGaInP Light-Emitting Diodes with Patterned Copper Substrates by Electroplating
- Improvement in Extraction Efficiency of GaN-Based Light-Emitting Diodes with Textured Surface Layer by Natural Lithography
- Surface Texturing for Wafer-Bonded Vertical-Type GaN/Mirror/Si Light-Emitting Diodes
- Fabrications of Si Thin-Film Solar Cells by Hot-Wire Chemical Vapor Deposition and Laser Doping Techniques
- Improvements of N-Side-up GaN Light-Emitting Diodes Performance by Indium–Tin-Oxide/Al Mirror
- GaN-Based Green Resonant Cavity Light-Emitting Diodes
- High-Brightness Wafer-Bonded Indium-Tin Oxide/Light-Emitting Diode/Mirror/Si
- Characteristics of Flip-Chip InGaN-Based Light-Emitting Diodes on Patterned Sapphire Substrates
- High-Performance AlGaInP/GaAs Light-Emitting Diodes with a Carbon-Doped GaP/Indium–Tin Oxide Contact Layer
- Growth and Characterization of Epitaxial ZnO Nanowall Networks Using Metal Organic Chemical Vapor Deposition
- GaN/Mirror/Si Light-Emitting Diodes for Vertical Current Injection by Laser Lift-Off and Wafer Bonding Techniques
- Rapid-Thermal-Processed BaTiO3 Thin Films Deposited by Liquid-Source Misted Chemical Deposition