Wafer-Bonded 859-nm Vertical-Cavity Surface-Emitting Lasers on Si Substrate with Metal Mirror
スポンサーリンク
概要
- 論文の詳細を見る
An 850-nm vertical-cavity surface-emitting laser (VCSEL) with a Au/AuBe/TaN/Ta/Si mirror substrate has been realized by low-temperature wafer bonding. It is found that the mirror substrate can be used as the bottom reflector to enhance the reflectivity of a bottom distributed Bragg reflector. The metal mirrors also served as the adhesive layers and ohmic contact layers to bond the Si substrate and the VCSEL epilayers. When the mirror-substrate-bonded VCSELs are excited by continuous-wave current at room temperature, they exhibit lower threshold current density and differential resistance (22 A/cm^2, 35 Ω) as compared with the original VCSELs on GaAs substrates (77 A/cm^2, 60Ω). This feature is attributed to the finding that the Si substrate provides a good heat sink.
- 社団法人応用物理学会の論文
- 2002-09-15
著者
-
HORNG Ray-Hua
Institute of Precision Engineering, National Chung Hsing University
-
WUU Dong-Sing
Department of Materials Engineering, National Chung Hsing University
-
Horng Ray-hua
Institute Of Precision Egineering National Chung Hsing University
-
Horng Ray-hua
Institute Of Precision Engineering National Chung Hsing University
-
Wuu Doug-sing
Department Of Materials Engineering National Chung Hsing University
-
Wuu Dong-Sing
Department of Electrical Engineering, Da-Yeh University
-
Horng Ray-Hua
Institute of Electrical Engineering, Da-Yeh University, Chang-Hwa 515, Taiwan, ROC
関連論文
- Improvements of N-Side-up GaN Light-Emitting Diodes Performance by Indium-Tin-Oxide/Al Mirror (Special Issue: Solid State Devices & Materials)
- Improvements in for N-Side-Up GaN/Mirror/Si LEDs Using High Reflective Ohmic Contacts
- Surface Texturing for Wafer-Bonded Vertical-Type GaN/Mirror/Si Light-Emitting Diodes
- Improvement in Extraction Efficiency of GaN-Based Light-Emitting Diodes with Textured Surface Layer by Natural Lithography
- Near-Ultraviolet InGaN/GaN Light-Emitting Diodes Grown on Patterned Sapphire Substrates
- Improvement in GaN-based light-emitting diodes by surface texturization with natural lithography
- GaN/Mirror/Si Light-Emitting Diodes for Vertical Current Injection by Laser Lift-Off and Wafer Bonding Techniques
- Characterization of Large-Area AlGaInP/Mirror/Si Light-Emitting Diodes Fabricated by Wafer Bonding
- High-Power AlGaInP Light-Emitting Diodes with Patterned Copper Substrates by Electroplating
- Ion-Implantation Treatment(Ba, Sr)TiO_3 Thin Films
- Etching Characteristics and Mechanism of Ba_Sr_TiO_3 Thin Films in an Inductively Coupled Plasma
- Thermal Stability of Co-Sputtered Ru-Ti Alloy Electrodes for Dynamic Random Access Memory Applications
- Rapid-Thermal-Processed BaTiO_3 Thin Films Deposited by Liquid-Source Misted Chemical Deposition
- Characterization of Thin-Film Electroluminescent Devices with Multiple Ta_2O_5 Interlayers Incorporated into SrS:Pr,Ce Phosphor
- Thinning Technology for Lithium Niobate Wafer by Surface Activated Bonding and Chemical Mechanical Polishing (Special Issue: Solid State Devices & Materials)
- Transparent barrier coatings for flexible organic light-emitting diode applications
- Effects of Transparent Conductive Layers on Characteristics of InGaN-Based Green Resonant-Cavity Light-Emitting Diodes
- High-Brightness Wafer-Bonded Indium-Tin Oxide/Light-Emitting Diode/Mirror/Si
- Wafer-Bonded AlGaInP/Au/AuBe/SiO_2/Si Light-Emitting Diodes
- Etching Characteristics of (Ba, Sr)TiO_3 Thin Films in an Inductively Coupled Plasma
- Wafer-Bonded 859-nm Vertical-Cavity Surface-Emitting Lasers on Si Substrate with Metal Mirror
- Near-Ultraviolet InGaN/GaN Light-Emitting Diodes Grown on Patterned Sapphire Substrates
- Characterization of Large-Area AlGaInP/Mirror/Si Light-Emitting Diodes Fabricated by Wafer Bonding
- Thinning Technology for Lithium Niobate Wafer by Surface Activated Bonding and Chemical Mechanical Polishing
- Effects of Transparent Conductive Layers on Characteristics of InGaN-Based Green Resonant-Cavity Light-Emitting Diodes
- High-Power AlGaInP Light-Emitting Diodes with Patterned Copper Substrates by Electroplating
- Improvement in Extraction Efficiency of GaN-Based Light-Emitting Diodes with Textured Surface Layer by Natural Lithography
- Surface Texturing for Wafer-Bonded Vertical-Type GaN/Mirror/Si Light-Emitting Diodes
- Fabrications of Si Thin-Film Solar Cells by Hot-Wire Chemical Vapor Deposition and Laser Doping Techniques
- Improvements of N-Side-up GaN Light-Emitting Diodes Performance by Indium–Tin-Oxide/Al Mirror
- GaN-Based Green Resonant Cavity Light-Emitting Diodes
- High-Brightness Wafer-Bonded Indium-Tin Oxide/Light-Emitting Diode/Mirror/Si
- Characteristics of Flip-Chip InGaN-Based Light-Emitting Diodes on Patterned Sapphire Substrates
- High-Performance AlGaInP/GaAs Light-Emitting Diodes with a Carbon-Doped GaP/Indium–Tin Oxide Contact Layer
- Growth and Characterization of Epitaxial ZnO Nanowall Networks Using Metal Organic Chemical Vapor Deposition
- GaN/Mirror/Si Light-Emitting Diodes for Vertical Current Injection by Laser Lift-Off and Wafer Bonding Techniques
- Rapid-Thermal-Processed BaTiO3 Thin Films Deposited by Liquid-Source Misted Chemical Deposition