Thermal Stability of Cu/NiSi-Contacted p+n Shallow Junction
スポンサーリンク
概要
- 論文の詳細を見る
The thermal stability of Cu/NiSi-contacted p+n shallow junction diodes was investigated with respect to their electrical characteristics and metallurgical reactions. The TaN/Cu/NiSi/p+n junction diode remained intact after 30 min thermal annealing at temperatures of up to 350°C. Upon annealing at 375°C, a marked increase in reverse bias leakage current occurred, and secondary ion mass spectrometry (SIMS) analysis indicated that Cu started to penetrate into the NiSi-contacted shallow junction region. After a higher temperature annealing at 425°C, a Cu3Si phase was formed. The failure of the TaN/Cu/NiSi/p+n junction diodes is attributed to the penetration of Cu through the NiSi layer into the junction region, leading to junction degradation by introducing deep-level trap states and the eventual formation of Cu3Si.
- Published by the Japan Society of Applied Physics through the Institute of Pure and Applied Physicsの論文
- 2004-09-15
著者
-
Lin Hsin-hung
Department Of Electronics Engineering National Chiao-tung University
-
CHEN Mao-Chieh
Department of Electronics Engineering & The Institute of Electronics, National Chiao Tung University
-
Wang Chao-chun
Department Of Electronics Engineering National Chiao-tung University
-
Lin Hsin-Hung
Department of Electronics Engineering, National Chiao-Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan
関連論文
- Formation of Bilayer Shallow MoSi_2/CoSi_2 Salicide Contact Using W/Co-Mo Alloy Metallization
- Threshold Voltage Instability in nMOSFETs with HfSiO/SiO_2 High-k Gate Stacks
- Physical and Barrier Properties of Plasma Enhanced Chemical Vapor Deposition α-SiC : N : H Films
- Effects of O_2- and N_2-Plasma Treatments on Copper Surface
- Physical and Barrier Properties of Plasma-Enhanced Chemical Vapor Deposited α-SiC : H Films from Trimethylsilane and Tetramethylsilane
- Annealing Effect on Boron High-Energy-Ion-Implantation-Induced Defects in Si
- Physical and Barrier Properties of Plasma-Enhanced Chemical Vapor Deposited α-SiCN:H Films with Different Hydrogen Contents
- Post-Implantation Thermal Annealing Effect on the Gate Oxide of Triple-Well-Structure
- An Efficient Improvement for Barrier Effect of W-filled Contact
- An Efficient Improvement for Barrier Effect of W-Filled Contact
- Reactively Sputtered Amorphous TaSi_xN_y Films Serving as Barrier Layer Against Copper Diffusion
- Chemically Vapor Deposited Cu Films on Ar-Plasma-Treated TiN Substrate(Surfaces, Interfaces, and Films)
- Effects of N_2O Plasma Treatment on the Performance of Excimer-Laser-Annealed Polycrystalline Silicon Thin Film Transistors
- Copper Chemical Vapor Deposition Films Deposited from Cu(1, 1, 1, 5, 5, 5-hexafluoroacetylacetonate) vinyltrimethylsilane
- Low-Temperature-Processed Polycrystalline silicon thin-film transistors Using a New Two-Step Crystallization Technique
- Annealing Effect on Boron High-Energy-Ion-Implantation-Induced Defects in Si
- Effects of Base Oxide Thickness and Silicon Composition on Charge Trapping in HfSiO/SiO2 High-$k$ Gate Stacks
- Physical and Barrier Properties of Plasma-Enhanced Chemical Vapor Deposited $\alpha$-SiC:H Films from Trimethylsilane and Tetramethylsilane
- Effect of TiN Substrate Plasma Treatment on Copper Chemical Vapor Deposition
- Physical and Barrier Properties of Plasma-Enhanced Chemical Vapor Deposited $\alpha$-SiCN:H Films with Different Hydrogen Contents
- Thermal Stability of Cu/NiSi-Contacted p+n Shallow Junction
- An Efficient Improvement for Barrier Effect of W-filled Contact
- Effects of O2- and N2-Plasma Treatments on Copper Surface
- Physical and Barrier Properties of Plasma Enhanced Chemical Vapor Deposition $\alpha$-SiC:N:H Films
- Formation of NiSi-Silicided p+n Shallow Junctions by BF2+ Implantation into/through Silicide and Rapid Thermal Annealing
- Formation and Characterization of NiSi-Silicided n+p Shallow Junctions