3項漸化式の最小解に対する安定な算法
スポンサーリンク
概要
- 論文の詳細を見る
非同次3項漸化式a_ny_<n-1>+b_ny_n+c_ny_<n+1>=e_nの最小解を求めることは, 数値的不安定性のために従来困難とされている. 同次3項漸化式の場合, Millerはその最小解を, 十分大きなNとN+1の項の値(y_N=1, y_<N+l>=0)を仮定し漸化式を逆向きにたどることにより安定に求めている. しかしながら, この方法では最小解の要求精度εに対して漸化式の項数N(ε)を自動的に決定できない. 本論文では, より一般的に規格化条件Σ^^∞__<i=0>λ_iy_i=kの下で非同次3項漸化式の最小解の重みつき有限和を, εの精度で自動的にN(ε)を決定して, 能率的に計算する算法を示す. 応用例として, ベッセル関数J_n(x)と不完全ガンマ関数γ(ν, x)の自動的な計算法を示す.
- 一般社団法人情報処理学会の論文
- 1982-11-15
著者
関連論文
- 多項式剰余列の安定な拡張算法
- 自然な数学インタフェースを持つプログラミング環境(科学技術における数値計算の理論と応用II)
- 数式の意味解釈とその文法及びメタ言語
- Givens 回転による多項式剰余列の拡張算法
- 自然な数学表記のためのユーザインターフェイス
- 多項式剰余列の安定な生成法
- 自然な数式ヒューマンインタフェースに関する研究
- 数値的に安定な一変数多項式剰余列の生成法(数値計算アルゴリズムの現状と展望II)
- 悪条件線形方程式に対する一つの直接解法 : 打ち切り最小2乗最小ノルム解
- 知識ベースによる数式の意味解釈とその応用
- Durand-Kerner型補助関数を用いた非線形方程式の多段反復解法
- 特異に近い関数の積分に対する自動積分(数値計算における精度保証付き算法とその計算量に関する研究)
- グラム・シュミット法による第1種フレドホルム積分方程式の解法(数値計算における精度保証付き算法とその計算量に関する研究)
- 多項式高速アルゴリズムの統一と一般化
- 数式のデータ表現と意味解釈システム
- 孫子定理の一応用 : 代数方程式の数値的因数分解(数値解析とそのアルゴリズム)
- 分割統治法による多項式の数値的因数分解
- べき型特異性をもつ関数の不定積分に対する自動積分法
- 準等間隔標本点上の三角多項式補間
- 準等間隔標本点上の実高速フーリエ変換
- 応用数理の遊歩道(20) : 流体力学からブール代数へ
- 三角関数の三項漸化式による傾斜楕円の高速生成法(コンピュータグラフィックス,インタラクションの理解とデザイン)
- NFLR数値積分法へのコーシー主値積分処理の追加
- 立方根の有理関数近似
- 正弦三項漸化式による円と楕円の高速生成法
- 二宮法とFLR法の結合による新しい適応型積分法(アルゴリズム論)
- 応用数理の遊歩道(23) : 数値計算にこと寄せて
- 応用数理の遊歩道(22) : 計算機とともに
- 応用数理の遊歩道(21) : 電子計算機との出会いからゾロタレフの遺産まで
- ポーランド旅行記
- NetNUMPACの現状と今後の展開について
- WWWを使用したNUMPAC案内システム -NetNUMPAC-
- 数学ソフトウェアパッケージのWWW上での案内システムの作成
- 3項漸化式の最小解に対する安定な算法
- 不規則分布二変数関数データに対するC^k級補間法
- 適応型ニュートン・コーツ積分法 (数値計算のアルゴリズムの研究)
- 数学ソフトウェアと教育 (数学的ソフトウェアの評価)
- 等差数列的に標本数を増す補間的自動積分法
- Mathematical Software (数値解析とコンピューター)
- 漸近級数域での諸関数の計算法 (数値計算のアルゴリズムの研究)
- 数学ライブラリNUMPAC
- xが小さい場合の一般化された余弦積分関数∫^∞_xt^cos tdtおよび正弦積分関数∫^∞_xt^sin tdtの数値計算
- xが大きい場合の不完全ガンマ関数Γ(ν,χ)の数値計算
- xが大きい場合のベッセル関数Y_ν(x)の数値計算
- 複合多項式の計算法
- 複合多項式による関数近似
- xが小さい場合の不完全ガンマ関数Γ(ν, x)の数値計算
- xが小さい場合のベッセル関数Y_ν(x)の数値計算
- 数学ソフトウェアの現状と問題点 (数値計算の動向)
- $x$が小さい場合の不完全ガンマ関数$\Gamma(v,x)$の数値計算 (数値計算のアルゴリズムの研究)
- xが大きい場合の変形ベッセル関数K_ν(x)の数値計算
- 大型機の標準関数と連立一次方程式解法サブルーチンの性能比較 (数値計算のアルゴリズムの研究)
- 適応型ニュートン・コーツ積分法の改良
- xが小さい場合の変形ベッセル関数K_ν(x)の数値計算
- ニ次元フーリエ展開におけるN $\log_2$ N個の係数の選択的計算法 (数値計算のアルゴリズムの研究)
- B-splineによる補間スプラインの算法
- 二変数補間スプラインの算法と誤差解析
- τ-methodによる複素変数のベッセル関数K_n(z)の数値計算
- 静電場的解釈に基づく代数方程式の反復解法
- 基数2のFFTに基づく任意項数の離散型Fourier変換
- √倍的に標本数を増す複素関数入力のFFT
- 高次収束する代数方程式の全根同時反復解法
- Pade近似による代数方程式の反復解法
- 高次収束する代数方程式の全根同時反復解法(数値解析と科学計算)
- 静電場的解釈による実係数代数方程式の反復解法
- 静電場的解釈に基く代数方程式の解法とその応用(数値計算基本アルゴリズムとそのソフトウェアの研究)
- 標本数を漸増する補間型積分則の重みの正値性について(数値計算基本アルゴリズムとそのソフトウェアの研究)
- 静電場的解釈による代数方程式の解法
- 実係数代数方程式の連立型解法とその静電場的解釈(並列数値計算アルゴリズムとその周辺)
- 第1種不完全複素楕円積分の全域かつ一様近似(II)
- 第1種不完全複素楕円積分の全域かつ一様近似
- 第1種複素楕円積分の全域近似 : 母数が小さい場合(並列数値計算アルゴリズムとその周辺)
- 平方根のための有理近似と改良ニュートン法 (近似計算とシミュレーションによる近似解法研究会報告集)
- 平方根の有理関数近似
- 積型積分の自動積分法べき型特異点の場合
- 対数特異性をもつ関数の不定積分に対する自動積分法
- 対数核を含む不定積分の自動積分法(スーパーコンピュータのための数値計算アルゴリズムの研究)
- 一般化チェビシェフ補間に基づく多重積分(並列数値計算アルゴリズムとその周辺)
- チェビシェフ級数展開と加速法による半無限振動積分
- 1階微分方程式に対するChebyshew-Galerkin法による特異積分(数値計算の基本アルゴリズムの研究)
- コーシーの主値積分に対する自動積分法
- 激しい振動積分の自動積分法
- 高橋,森の数値積分理論のFFTによる実現
- 標本点数を低倍率で漸増させる実関数のFFT
- Van der Corput列に基づく補間法の数値的安定性 (線型計算の標準算法と実現)
- 激しい振動積分$\int_{-1}^{1}e^{i{\omega}t}f(t)dt$の求積法 (数値計算のアルゴリズムの研究)
- $\sqrt{2}$倍的に標本数を増す関数入カのFFT (数値計算のアルゴリズムの研究)
- フーリエ変換サブルーチン・パッケージの作成 (数学的ソフトウェアの評価)
- 一様分布に基づ
- FFTとその数値解析における応用