Improvement of L-Proline Production by Sulfaguanidine Resistant Mutants Derived from L-Glutamic Acid-producing Bacteria(Microbiology & Fermentation Industry)
スポンサーリンク
概要
- 論文の詳細を見る
Excellent L-proline producers were screened for among sulfaguanidine resistant mutants derived from three typical L-glutamic acid-producing bacteria: Brevibacterium flavum, B. lactofer-mentum, and C. glutamicum. The best strain, No. 199, is a sulfaguanidine resistant mutant derived from an isoleucine auxotroph of B. flavum 2247 by nitrosoguanidine. Strain No. 199 produced 35 mg/ml of L-proline after 72hr of cultivation with 10% glucose as a carbon source. The strain also accumulated purine bases such as adenine, guanine, and hypoxanthine, i.e., degradation products of purine nucleotides. In the mutant, 1.6〜2.0 fold more intracellular ATP was found than that in the parent strain; it is a substrate of glutamate kinase relating to L-proline biosynthesis. On the contrary, the levels of intracellular glutamic acid, a substrate of glutamate kinase, were similar among these strains. It was confirmed that the increment of internal ATP, which was important in the L-proline production mechanism, was very effective in the improvement of L-proline producers.
- 社団法人日本農芸化学会の論文
- 1986-09-23
著者
-
Yoshinaga F
Bio-polymer Research Co. Ltd.
-
Yoshinaga Fumihiro
Central Research Laboratories Of Ajinomoto Co. Inc.
-
Tsuchida T
Bio-polymer Research Co. Ltd.
-
Tsuchida Takayasu
Central Research Laboratories Of Ajinomoto Co. Inc.
-
Tsuchida T
Bio-polymer Res. Co. Ltd.
-
Kubota Koji
Central Research Laboratories Ajinomoto Co. Inc.
関連論文
- Optimal Conditions for the Enzymatic Production of D-Amino Acids from the Corresponding 5-Substituted Hydantoins(Microbiology & Fermentation Industry)
- Characterization of Non-Newtonian Behavior during Mixing of Bacterial Cellulose in a Bioreactor
- An Increase in Apparent Affinity for Sucrose of Mung Bean Sucrose Synthase Is Caused by In Vitro Phoshorylation or Directed Mutagenesis of Ser^
- Subsite Structure of Exo-1, 4-β-Glucosidase from Acetobacter xylinum BPR2001
- Purification and Characterization of Exo-1, 4-β-Glucosidase from Acetobacter xylinum BPR2001
- Synthesis of Asymmetrically Labeled Sucrose by a Recombinant Sucrose Synthase
- A Beta-Glucosidase Gene Downstream of the Cellulose Synthase Operon in Cellulose-producing Acetobacter
- Expression and Characterization of Sucrose Synthase from Mung Bean Seedlings in Escherichia coli
- Two Types of Cellulase Activity Produced by a Cellulose-Producing Acetobacter Strain
- PROPERTIES OF RECOMBINANT SUCROSE SYNTHASE
- EXPRESSION OF SUCROSE SYNTHASE CDNA AND ITS ACTIVITY IN ESCHERICHIA COLI
- Addition of a Small Amount of an Endoglucanase Enhances Cellulose Production by A cetobacter xylinum
- Breeding of a 5-Fluorouridine-resistant Mutant with Increased Cellulose Production from Acetobacter xylinum subsp. nonacetoxidans
- Acetobacter xylinum Mutant with High Cellulose Productivity and an Ordered Structure
- Relationship between Sulfaguanidine Resistance and Increased Cellulose Production in Acetobacter xylinum BPR3001E
- Increase in Cellulose Production by Sulfaguanidine-resistant Mutants Derived from Acetobacter xylinum subsp. sucrofermentans
- Asymmetric Production of _L-Carnitine from trans-Crotonbetaine by Proteus mirabilis(Microbiology & Fermentation Industry)
- Mechanism of Asymmetric Production of L-Aromatic Amino Acids from the Corresponding Hydantoins by Flavobacterium sp.(Microbiology & Fermentation Industry)
- Enzymatic Production of _L-Phenylalanine from trans-Cinnamic Acid by Endomyces lindneri(Microbiology & Fermentation Industry)
- Relationship between the Physical Properties and Surface Area of Cellulose Derived from Adsorbates of Various Molecular Sizes.
- Relationship between Suspension Properties and Fibril Structure of Disintegrated Bacterial Cellulose
- Acetylation of Bacterial Cellulose : Preparation of Cellulose Acetate Having a High Degree of Polymerization
- Degree of Polymerization of Cellulose from Acetobacter xylinum BPR2001 Decreased by Cellulase Produced by the Strain
- Emulsion-stabilizing Effect of Bacterial Cellulose
- Evidence for the Periodically Alternating Microfibrillar Structure of Bacterial Cellulose
- Purification and Characterization of Novel Transglutaminase from Bacillus subtilis Spores
- Asymmetric Synthesis of S-Carboxymethyl-L-cysteine by a Chemico-enzymatic Method (Microbiological & Fermentation Industry)
- Enzymatic Production of L-Serine from 2-Oxo-oxazolidine-4-carboxylic Acid(Microbiology & Fermentation Industry)
- Mechanism of Asymmetric Production of D-Amino Acids from the Corresponding Hydantoins by Pseudomonas sp.(Microbiology & Fermentation Industry)
- Adenosine Phosphorolyzing Enzymes from Microorganisms and Ribavirin Production by the Application of the Enzyme(Microbiology & Fermentation Industry)
- Mechanism of Stereospecific Production of L-Amino Acids from the Corresponding 5-Substituted Hydantoins by Bacillus brevis(Microbiology & Fermentation Industry)
- Enzymatic Production of L-Amino Acids from the Corresponding 5-Substituted Hydantoins by a Newly Isolated Bacterium, Bacillus brevis AJ-12299(Microbiology & Fermentation Industry)
- Enzymatic Production of Ribavirin from Purine Nucleosides by Brevibacterium acetylicum ATCC 954(Microbilolgy & Fermentation Industry)
- Enzumatic Production of Ribavirin from Orotidine by Erwinia carotovora AJ 2992(Pesticide Chemistry)
- Enzymatic Production of Ribavirin from Pyrimidine Nucleosides by Enterobacter aerogenes AJ 11125(Microbiology & Fermentation Industry)
- Enzymatic Production of Ribavirin(Microbiology & Fermentation Industry)
- Increased Cellulose Production from Sucrose with Reduced Levan Accumulation by an Acetobacter Strain Harboring a Recombinant Plasmid
- The Characterization of Acetic Acid Bacteria Efficiently Producing Bacterial Cellulose from Sucrose : The Proposal of Acetobacter xylinum subsp. nonacetoxidans subsp. Nov.
- High Rate Production in Static Culture of Bacterial Cellulose from Sucrose by a Newly Isolated Acetobacter Strain
- Screening of Bacterial Cellulose-producing Acetobacter Strains Suitable for Sucrose as a Carbon Source
- Effect of Ethanol on Bacterial Cellulose Production from Fructose in Continuous Culture
- Inhibitory Effect of Carbon Dioxide on Bacterial Cellulose Production by Acetobacter in Agitated Culture
- Effect of Lactate on Bacterial Cellulose Production from Fructose in Continuous Culture
- Effects of Oxygen and Carbon Dioxide Pressures on Bacterial Cellulose Production by Acetobacter in Aerated and Agitated Culture
- Screening of Bacterial Cellulose-producing Acetobacter Strains Suitable for Agitated Culture
- Increased Cellulose Production from Sucrose by Acetobacter after Introducing the Sucrose Phosphorylase Gene
- Characterization of the Biosynthetic Pathway of Cellulose from Glucose and Fructose in Acetobacter xylinum
- Effect of Agitator Configuration on Bacterial Cellulose Productivity in Aerated and Agitated Culture
- A Host-Vector System for a Cellulose-Producing Acetobacter Strain
- Prosthetic Group of Aldehyde Dehydrogenase in Acetic Acid Bacteria Not Pyrroloquinoline Quinone
- Effects of L-Serine Dehydratase Activity on L-Serine Production by Corynebacterium glycinophilum and an Examination of the Properities of the Enzyme
- Production of L-serine from Glycine by Corynebacterium glycinophilum and Properties of Serine Hydroxymethyltransferase, a Key Enzyme in L-Serine Production
- A Synthetic Medium for Bacterial Cellulose Production by Acetobacter xylinum subsp. sucrofermentans
- Improvement of L-Proline Production by Sulfaguanidine Resistant Mutants Derived from L-Glutamic Acid-producing Bacteria(Microbiology & Fermentation Industry)
- Fermentative Production of L-Glutamine by Sulfaguanidine Resistant Mutants Derived from L-Glutamate Producing Bacteria
- Fermentative Production of L-Proline by DL-3, 4-Dehydroproline Resistant Mutants of L-Glutamate Producing Bacteria
- Mechanism of Purine Arabinoside Synthesis by Bacterial Transarabinosylation Reaction
- Microbiological Synthesis of Adenine Arabinoside
- Properties of Nucleoside Phosphorylase from Enterobacter aerogenes
- Microbial Synthesis of Purine Arabinosides and Their Biological Activity
- Production of L-Phenylalanine by a Mutant of Brevibacterium lactofermentum 2256
- Improved Production of L-Serine by Mutants of Corynebacterium glycinophilum with Less Serine Dehydratase Activity
- Construction of L-Threonine Overproducing Strains of Escherichia coli K-12 Using Recombinant DNA Techniques
- Carbon-13-NMR Spectroscopic Studies on L-Serine Synthesis from Glycine in Corynebacterium glycinophilum