Synthesis of Multiwalled Carbon Nanocoils Using Codeposited Thin Film of Fe–Sn as Catalyst
スポンサーリンク
概要
- 論文の詳細を見る
Multiwalled carbon nanocoils (CNCs) have been synthesized by a method of thermal chemical vapor deposition (CVD) using a codeposited thin film consisting of Fe and Sn as catalysts. It has been found that the multiwalled CNCs are thinner and have a higher crystallinity than conventional CNCs. The catalyst particles are observed at the roots of CNCs, with diameters much larger than the line diameters of the coils. These large particles are formed by the aggregation of Sn and Fe reduced by the C2H2 gas in CVD. These results indicate that Sn plays a crucial role in the growth of the multiwalled CNCs, and a base growth mechanism that differs from conventional growth mechanisms has been experimentally observed and analyzed.
- Published by the Japan Society of Applied Physics through the Institute of Pure and Applied Physicsの論文
- 2008-04-25
著者
-
Pan Lujun
Department Of Physics And Electronics Osaka Prefecture University
-
Nakayama Yoshikazu
Department Of Electrical Engineering College Of Engineering University Of Osaka
-
Akita Seiji
Department Of Physics And Electronics College Of Engineering University Of Osaka Prefecture
-
Kanada Ryo
Department Of Applied Physics Tohoku University
-
Hirahara Kaori
Department Of Mechanical Engineering Graduate School Of Engineering Osaka University
-
Akita Seiji
Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan
-
Okazaki Nobuharu
Osaka Science and Technology Center, Technology Research Institute of Osaka Prefecture, New Technology Developing Facility 2F, 2-7-1 Ayumino, Izumi, Osaka 594-1157, Japan
-
Pan Lujun
Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan
関連論文
- Photoinduced Degradation of Photoluminescence in Polysilane Films
- Electrically Induced Orientation of Poly(silane)s
- Growth of Super Long Aligned Brush-Like Carbon Nanotubes
- Interlayer Sliding Force of Individual Multiwall Carbon Nanotubes
- Effect of Morphology on Field Emission Properties of Carbon Nanocoils and Carbon Nanotubes
- Field Emission Properties of Carbon Tubule Nanocoils
- Synthesis of Carbon Tubule Nanocoils in High Yield Using Iron-Coated Indium Tin Oxide as Catalyst
- Thermal Decomposition of Poly(methylphenylsilane)
- Carbon Nitride Films Produced Using Electron Cyclotron Resonance Nitrogen Plasmas
- Scanning Probe Microscope Lithography of Silicon Using a Combination of a Carbon Nanotube Tip and a Polysilane Film as a Mask
- Carbon-Nanotube Tip for Highly-Reproducible Imaging of Deoxyribonucleic Acid Helical Turns by Noncontact Atomic Force Microscopy
- Determination of Carbon Nanocoil Orientation by Dielectrophoresis
- Vertically Aligned Carbon Nanotubes Grown at Low Temperatures for Use in Displays
- Comparison of Field Emissions from Side Wall and Tip of an Individual Carbon Nanotube
- In Situ Study of Fe/ITO Catalysts for Carbon Nanocoil Growth By X-Ray Diffraction Analysis
- Instability of Field Emission from a Standalone Multiwalled Carbon Nanotube with an Insulator Barrier
- In Situ Study of Iron Catalysts for Carbon Nanotube Growth Using X-Ray Diffraction Analysis
- Comparison of Capped Carbon Nanotube with Open-Ended One for Field Emission
- Barrier Effect on Field Emission from Stand-alone Carbon Nanotube
- Daisylike Field-Emission Images from Standalone Open-Ended Carbon Nanotube
- Subgap Absorption Spectra in Polysilane Films
- Single-Wall Carbon Nanotube Field Effect Transistors with Non-Volatile Memory Operation
- Atomic Force Microscopy of Single-Walled Carbon Nanotubes Using Carbon Nanotube Tip
- Thermally Activated Electric Conduction in Carbon Nanotubes
- Orientation of Carbon Nanotubes Using Electrophoresis
- Individual Carbon Nanotubes as Nano-incandescent
- Prephotobleaching Process in Polysilane Films
- Photobleaching Process in Polysilane Films
- Temperature-Dependent Electrical Orientation of Poly(cyclohexylmethylsilane)
- Synthesis of Carbon Nanochaplets by Catalytic Thermal Chemical Vapor Deposition
- Radical Fluxes in Electron Cyclotron Resonance Plasma Chemical Vapor Deposition of Amorphous Silicon
- Nanoindentation of Polycarbonate Using Carbon Nanotube Tip
- Direct Nanolithography of Organic Polysilane Films Using Carbon Nanotube Tips
- Influence of Force Acting on Side Face of Carbon Nanotube in Atomic Force Microscopy
- Analyses on Monolithic InP HEMT Resistive Mixer Operating under Very Low LO Power
- Carbon Nanotube Sharpening Using an Induced Electrical Current
- Adhesive Behavior of Single Carbon Nanotubes
- Trapping Protein Molecules at a Carbon Nanotube Tip using Dielectrophoresis
- Current-Induced Plastic Deformation of Double-Walled Carbon Nanotubes
- Nanolithography of Organic Polysilane Films Using Carbon Nanotube Tips
- Fabrication and Properties of a-Si : H Photoreceptor and Its Application to Laser Beam Printer : C-3: SENSORS
- High-Rate Deposition of a-Si: H Film Using the Decomposition of Mono-Silane
- Optical Emission Spectroscopy of Arc Flame Plasma for Generation of Carbon Nanotubes
- Atomic force microscopy with carbon nanotube probe resolves the subunit organization of protein complexes
- Attachment of Carbon Nanotubes to a Substrate by Electron-Beam-Induced Structural Change of Fullerene Molecules
- Nanoincandescent Consisting of Individual Carbon Nanotubes
- Buckling of Multiwall Carbon Nanotubes under Axial Compression
- Structural Study of Amorphous SiN_x:H Films Produced by Plasma-Enhanced Chemical Vapor Deposition
- Synthesis, Nanoprocessing, and Yarn Application of Carbon Nanotubes
- Manipulation of Nanomaterial by Carbon Nanotube Nanotweezers in Scanning Probe Microscope
- Effect of Annealing on Photoluminescence Spectra and Film Structure in a-SiN_x:H
- Length Adjustment of Carbon Nanotube Probe by Electron Bombardment
- Diameter Control of Arc Produced Multiwall Carbon Nanotubes by Ambient Gas Cooling : Nuclear Science, Plasmas, and Electric Discharges
- Quantitative Analysis of the Magnetic Properties of Metal-Capped Carbon Nanotube Probe
- Novel Process for Fabricating Nanodevices Consisting of Carbon Nanotubes
- The cell biological application of carbon nanotube probes for atomic force microscopy : comparative studies of malaria-infected erythrocytes
- Temperature Dependence of Cantilevered Carbon Nanotube Oscillation
- Growth of Highly Dense Brushlike Carbon Nanotubes Using Layered Catalysts and Rapid Heating
- Molecular Dynamics Simulations for Molecular Linear Motor Inside Nanotube
- Response of Carbon Nanotube Field Effect Transistors to Vibrating Gate Determined by Scanning Gate Microscopy
- Effect of Residual Acetylene Gas on Growth of Vertically Aligned Carbon Nanotubes
- Single-Wall Carbon Nanotube Field Effect Transistors with Non-Volatile Memory Operation
- Kelvin Probe Force Microscopy Imaging Using Carbon Nanotube Probe
- Reduction of Long-range Interactions using Carbon Nanotube Probes in Biological Systems
- Energy Barrier for Disappearance of Buckling to Form a Plastic Bend in Carbon Nanotubes
- Effect of Oxygen Included in Substrates for Growth of Brushlike Carbon Nanotubes
- Field Emission Properties and Structural Changes of a Stand-Alone Carbon Nanocoil
- Barrier Modification at Contacts between Carbon Nanotube and Pt Electrode Using Well-Controlled Joule Heating
- Recovery Force of Carbon Nanotube Shape Memory
- 1D-TlInSe2: Band Structure, Dielectric Function and Nanorods
- Temperature Dependent Resistance of Multi-Wall Carbon Nanotube
- Orthopedic Treatment of Multiwalled Carbon Nanotube Probes
- Instability of Field Emission from a Standalone Multiwalled Carbon Nanotube with an Insulator Barrier
- In Situ Study of Fe/ITO Catalysts for Carbon Nanocoil Growth By X-Ray Diffraction Analysis
- Low-Temperature Growth of Vertically Aligned Carbon Nanotubes Using Binary Catalysts
- Formation of Carbon Nitride Films by the Radio-Frequency Plasma Chemical Vapor Deposition Method
- Mechanical Properties of Sharpened Carbon Nanotube Tips
- Extraction of Inner Shell from Multiwall Carbon Nanotubes for Scanning Probe Microscope Tip
- Diameter Control of Carbon Nanocoils by the Catalyst of Organic Metals
- Synthesis of Brushlike Carbon Nanotubes Using Wet-Processed Catalyst
- Alignment of Carbon Nanocoils in Polymer Matrix Using Dielectrophoresis
- Electrical Properties of Connected Multiwall Carbon Nanotubes
- Nanoscale Variable Resistance Using Interlayer Sliding of Multiwall Nanotube
- Stable Field Emission Property of Patterned MgO Coated Carbon Nanotube Arrays
- Growth of Super Long Aligned Brush-Like Carbon Nanotubes
- Daisylike Field-Emission Images from Standalone Open-Ended Carbon Nanotube
- Buckling of Multiwall Carbon Nanotubes under Axial Compression
- Scanning Probe Microscope Tip with Carbon Nanotube Truss
- Synthesis of Multiwalled Carbon Nanocoils Using Codeposited Thin Film of Fe–Sn as Catalyst
- Carbon Nitride Films Produced Using Electron Cyclotron Resonance Nitrogen Plasmas
- In Situ Study of Iron Catalysts for Carbon Nanotube Growth Using X-Ray Diffraction Analysis
- Buckling Test under Axial Compression for Multiwall Carbon Nanotubes
- Vertically Aligned Carbon Nanotubes Grown at Low Temperatures for Use in Displays
- Comparison of Capped Carbon Nanotube with Open-Ended One for Field Emission
- Barrier Effect on Field Emission from Stand-alone Carbon Nanotube
- Structural Study of Amorphous SiNx:H Films Produced by Plasma-Enhanced Chemical Vapor Deposition
- Plasticity of Carbon Nanotubes: Aiming at Their Use in Nanosized Devices
- Structural Stability of Carbon Nanotube Tips on Nanoindentation of Polycarbonate
- Thermal Decomposition of Poly(methylphenylsilane)
- Interlayer Sliding Force of Individual Multiwall Carbon Nanotubes