Carbon Nitride Films Produced Using Electron Cyclotron Resonance Nitrogen Plasmas
スポンサーリンク
概要
- 論文の詳細を見る
Carbon nitride films have been produced using electron cyclotron resonance (ECR) nitrogen plasmas. The results of optical emission spectroscopy indicate that reactive nitrogen species are more easily generated than methane-derived species downstream in an ECR plasma. The effect of varying the gas ratio of N2 to CH4 as well as the substrate temperature on the N/C composition ratio in the film and on the film structure have been investigated. The film growth rate decreases but the concentration of nitrogen in the film increases as the gas ratio of N2 to CH4 increases. At lower substrate temperatures, both the deposition rate and the nitrogen concentration increase. The ratio of carbon to nitrogen in the film increases from 12% to 40% as the substrate temperature is lowered from 26°C to 5°C.
- Publication Office, Japanese Journal of Applied Physics, Faculty of Science, University of Tokyoの論文
- 1997-07-30
著者
-
Zhang Mei
Department Of Chemistry Wuhan University
-
Pan Lujun
Department Of Physics And Electronics Osaka Prefecture University
-
Nakayama Yoshikazu
Department Of Electrical Engineering College Of Engineering University Of Osaka
-
Miyazaki Tsutomu
Department Of Physics And Electronics College Of Engineering Osaka Prefecture University
-
Miyazaki Tsutomu
Department of Physics and Electronics, College of Engineering, Osaka Prefecture University,
-
Pan Lujun
Department of Physics and Electronics, College of Engineering, Osaka Prefecture University,
関連論文
- Photoinduced Degradation of Photoluminescence in Polysilane Films
- Electrically Induced Orientation of Poly(silane)s
- Growth of Super Long Aligned Brush-Like Carbon Nanotubes
- Interlayer Sliding Force of Individual Multiwall Carbon Nanotubes
- Effect of Morphology on Field Emission Properties of Carbon Nanocoils and Carbon Nanotubes
- Field Emission Properties of Carbon Tubule Nanocoils
- Synthesis of Carbon Tubule Nanocoils in High Yield Using Iron-Coated Indium Tin Oxide as Catalyst
- Thermal Decomposition of Poly(methylphenylsilane)
- Carbon Nitride Films Produced Using Electron Cyclotron Resonance Nitrogen Plasmas
- Scanning Probe Microscope Lithography of Silicon Using a Combination of a Carbon Nanotube Tip and a Polysilane Film as a Mask
- Triple Helix of β-D-Glucan from Lentinus Edodes in 0.5 M NaCl Aqueous Solution Characterized by Light Scattering
- Solution Properties of Antitumor Sulfated Derivative of α-(1→3)-D-Glucan from Ganoderma lucidum
- Carbon-Nanotube Tip for Highly-Reproducible Imaging of Deoxyribonucleic Acid Helical Turns by Noncontact Atomic Force Microscopy
- Determination of Carbon Nanocoil Orientation by Dielectrophoresis
- Vertically Aligned Carbon Nanotubes Grown at Low Temperatures for Use in Displays
- Comparison of Field Emissions from Side Wall and Tip of an Individual Carbon Nanotube
- In Situ Study of Fe/ITO Catalysts for Carbon Nanocoil Growth By X-Ray Diffraction Analysis
- Instability of Field Emission from a Standalone Multiwalled Carbon Nanotube with an Insulator Barrier
- In Situ Study of Iron Catalysts for Carbon Nanotube Growth Using X-Ray Diffraction Analysis
- Comparison of Capped Carbon Nanotube with Open-Ended One for Field Emission
- Barrier Effect on Field Emission from Stand-alone Carbon Nanotube
- Daisylike Field-Emission Images from Standalone Open-Ended Carbon Nanotube
- Subgap Absorption Spectra in Polysilane Films
- Single-Wall Carbon Nanotube Field Effect Transistors with Non-Volatile Memory Operation
- Atomic Force Microscopy of Single-Walled Carbon Nanotubes Using Carbon Nanotube Tip
- Thermally Activated Electric Conduction in Carbon Nanotubes
- Orientation of Carbon Nanotubes Using Electrophoresis
- Individual Carbon Nanotubes as Nano-incandescent
- Determination of celecoxib in human plasma and breast milk by high-performance liquid chromatographic assay
- Determination of rofecoxib in human plasma and breast milk by high-performance liquid chromatographic assay
- Prephotobleaching Process in Polysilane Films
- Photobleaching Process in Polysilane Films
- Temperature-Dependent Electrical Orientation of Poly(cyclohexylmethylsilane)
- Synthesis of Carbon Nanochaplets by Catalytic Thermal Chemical Vapor Deposition
- Radical Fluxes in Electron Cyclotron Resonance Plasma Chemical Vapor Deposition of Amorphous Silicon
- Nanoindentation of Polycarbonate Using Carbon Nanotube Tip
- Direct Nanolithography of Organic Polysilane Films Using Carbon Nanotube Tips
- Influence of Force Acting on Side Face of Carbon Nanotube in Atomic Force Microscopy
- Analyses on Monolithic InP HEMT Resistive Mixer Operating under Very Low LO Power
- Carbon Nanotube Sharpening Using an Induced Electrical Current
- Adhesive Behavior of Single Carbon Nanotubes
- Trapping Protein Molecules at a Carbon Nanotube Tip using Dielectrophoresis
- Current-Induced Plastic Deformation of Double-Walled Carbon Nanotubes
- Nanolithography of Organic Polysilane Films Using Carbon Nanotube Tips
- Fabrication and Properties of a-Si : H Photoreceptor and Its Application to Laser Beam Printer : C-3: SENSORS
- High-Rate Deposition of a-Si: H Film Using the Decomposition of Mono-Silane
- Optical Emission Spectroscopy of Arc Flame Plasma for Generation of Carbon Nanotubes
- Atomic force microscopy with carbon nanotube probe resolves the subunit organization of protein complexes
- Attachment of Carbon Nanotubes to a Substrate by Electron-Beam-Induced Structural Change of Fullerene Molecules
- Buckling of Multiwall Carbon Nanotubes under Axial Compression
- Determination of perphexiline and its metabolite hydroxyperhexiline in human plasma by liquid chromatography/tandem mass spectrometry
- Structural Study of Amorphous SiN_x:H Films Produced by Plasma-Enhanced Chemical Vapor Deposition
- Synthesis, Nanoprocessing, and Yarn Application of Carbon Nanotubes
- Manipulation of Nanomaterial by Carbon Nanotube Nanotweezers in Scanning Probe Microscope
- Effect of Annealing on Photoluminescence Spectra and Film Structure in a-SiN_x:H
- Length Adjustment of Carbon Nanotube Probe by Electron Bombardment
- Diameter Control of Arc Produced Multiwall Carbon Nanotubes by Ambient Gas Cooling : Nuclear Science, Plasmas, and Electric Discharges
- Quantitative Analysis of the Magnetic Properties of Metal-Capped Carbon Nanotube Probe
- Novel Process for Fabricating Nanodevices Consisting of Carbon Nanotubes
- Determination of dexamethasone and dexamethasone sodium phosphate in human plasma and cochlear perilymph by liquid chromatography/tandem mass spectrometry
- The cell biological application of carbon nanotube probes for atomic force microscopy : comparative studies of malaria-infected erythrocytes
- Growth of Highly Dense Brushlike Carbon Nanotubes Using Layered Catalysts and Rapid Heating
- Molecular Dynamics Simulations for Molecular Linear Motor Inside Nanotube
- Response of Carbon Nanotube Field Effect Transistors to Vibrating Gate Determined by Scanning Gate Microscopy
- Effect of Residual Acetylene Gas on Growth of Vertically Aligned Carbon Nanotubes
- Single-Wall Carbon Nanotube Field Effect Transistors with Non-Volatile Memory Operation
- Kelvin Probe Force Microscopy Imaging Using Carbon Nanotube Probe
- Reduction of Long-range Interactions using Carbon Nanotube Probes in Biological Systems
- Energy Barrier for Disappearance of Buckling to Form a Plastic Bend in Carbon Nanotubes
- Effect of Oxygen Included in Substrates for Growth of Brushlike Carbon Nanotubes
- Field Emission Properties and Structural Changes of a Stand-Alone Carbon Nanocoil
- Barrier Modification at Contacts between Carbon Nanotube and Pt Electrode Using Well-Controlled Joule Heating
- Recovery Force of Carbon Nanotube Shape Memory
- 1D-TlInSe2: Band Structure, Dielectric Function and Nanorods
- Temperature Dependent Resistance of Multi-Wall Carbon Nanotube
- Orthopedic Treatment of Multiwalled Carbon Nanotube Probes
- Instability of Field Emission from a Standalone Multiwalled Carbon Nanotube with an Insulator Barrier
- In Situ Study of Fe/ITO Catalysts for Carbon Nanocoil Growth By X-Ray Diffraction Analysis
- Low-Temperature Growth of Vertically Aligned Carbon Nanotubes Using Binary Catalysts
- Formation of Carbon Nitride Films by the Radio-Frequency Plasma Chemical Vapor Deposition Method
- Mechanical Properties of Sharpened Carbon Nanotube Tips
- Extraction of Inner Shell from Multiwall Carbon Nanotubes for Scanning Probe Microscope Tip
- Diameter Control of Carbon Nanocoils by the Catalyst of Organic Metals
- Synthesis of Brushlike Carbon Nanotubes Using Wet-Processed Catalyst
- Alignment of Carbon Nanocoils in Polymer Matrix Using Dielectrophoresis
- Electrical Properties of Connected Multiwall Carbon Nanotubes
- Nanoscale Variable Resistance Using Interlayer Sliding of Multiwall Nanotube
- Stable Field Emission Property of Patterned MgO Coated Carbon Nanotube Arrays
- Growth of Super Long Aligned Brush-Like Carbon Nanotubes
- Daisylike Field-Emission Images from Standalone Open-Ended Carbon Nanotube
- Buckling of Multiwall Carbon Nanotubes under Axial Compression
- Scanning Probe Microscope Tip with Carbon Nanotube Truss
- Synthesis of Multiwalled Carbon Nanocoils Using Codeposited Thin Film of Fe–Sn as Catalyst
- Carbon Nitride Films Produced Using Electron Cyclotron Resonance Nitrogen Plasmas
- In Situ Study of Iron Catalysts for Carbon Nanotube Growth Using X-Ray Diffraction Analysis
- Vertically Aligned Carbon Nanotubes Grown at Low Temperatures for Use in Displays
- Comparison of Capped Carbon Nanotube with Open-Ended One for Field Emission
- Barrier Effect on Field Emission from Stand-alone Carbon Nanotube
- Thermal Decomposition of Poly(methylphenylsilane)
- Identification of a germline mutation in the HRPT2 gene in a Chinese family with parathyroid carcinomas