Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production(MICROBIAL PHYSIOLOGY AND BIOTECHNOLOGY)
スポンサーリンク
概要
- 論文の詳細を見る
Lignocellulosic biomass is a promising source for bioethanol production, because it is abundant worldwide and has few competing uses. However, the treatment of lignocelllulosic biomass with weak acid to release cellulose and hemicellulose generates many kinds of byproducts including furfural and 5-hydroxymethylfurfural, which inhibit fermentation by yeast, because they generate reactive oxygen species (ROS) in cells. In order to acquire high tolerance to oxidative stress in bioethanol yeast strains, we focused on the transcription activator Msn2 of Saccharomyces cerevisiae, which regulates numerous genes involved in antioxidative stress responses, and constructed bioethanol yeast strains that overexpress Msn2 constitutively. The Msn2-overexpressing bloethanol strains showed tolerance to oxidative stress, probably due to the high-level expression of various antioxidant enzyme genes. Unexpectedly, these strains showed ethanol sensitivity compared with the control strain, probably due to imbalance of the expression level between Msn2 and Msn4. In the presence of furfural, the engineered strains exhibited reduced intracellular ROS levels, and showed rapid growth compared with the control strain. The fermentation test in the presence of furfural revealed that the Msn2-overexpressing strains showed improvement of the initial rate of fermentation. Our results indicate that overexpression of the transcription activator Msn2 in bioethanol yeast strains confers furfural tolerance by reducing the intracellular ROS levels and enhances the initial rate of fermentation in the presence of furfural, suggesting that these strains are capable of adapting rapidly to various compounds that inhibit fermentation by inducing ROS accumulation. Our results not only promise to improve bioethanol production from lignocellulosic biomass, but also provide novel insights for molecular breeding of industrial yeast strains.
- 公益社団法人日本生物工学会の論文
著者
-
Takagi Hiroshi
Graduate School of Biological Sciences, Nara Institute of Science and Technology
-
Shimoi H
Hiroshima Univ. Higashihiroshima Jpn
-
Shimoi H
Hiroshima Univ. Higashi‐hiroshima Jpn
-
Shimoi Hitoshi
Department Of Molecular Biotechnology Graduate School Of Advanced Sciences Of Matter Hiroshima Unive
-
Takagi Hiroshi
Graduate School Of Biological Sciences Nara Inst. Of Sci. And Technol.
-
Watanabe Daisuke
National Research Institute of Brewing
-
OHTSU Iwao
Graduate School of Biological Sciences, Nara Institute of Science and Technology
-
Ohtsu Iwao
Graduate School Of Biological Sciences Nara Institute Of Science And Technology
-
Takagi Hiroshi
Graduate School Of Biological Sciences Nara Institute Of Science And Technology
-
Inai Tomomi
National Research Institute Of Brewing
-
Sasano Yu
Graduate School of Biological Sciences, Nara Institute of Science and Technology
-
Ukibe Ken
Graduate School of Biological Sciences, Nara Institute of Science and Technology
-
Shimori Hitoshi
National Research Institute of Brewing
-
Ukibe Ken
Graduate School Of Biological Sciences Nara Institute Of Science And Technology
-
Sasano Yu
Graduate School Of Biological Sciences Nara Institute Of Science And Technology
-
Ohtsu Iwao
Graduate School Of Biological Sciences Nara Inst. Of Sci. And Technol.
関連論文
- Elevated Expression of Genes under the Control of Stress Response Element (STRE) and Msn2p in an Ethanol-Tolerance Sake Yeast Kyokai No. 11(BREWING AND FOOD TECHNOLOGY)
- Disruption of ubiquitin-related genes in laboratory yeast strains enhances ethanol production during sake brewing(BREWING AND FOOD TECHNOLOGY)
- Overexpression of MSN2 in a sake yeast strain promotes ethanol tolerance and increases ethanol production in sake brewing(BREWING AND FOOD TECHNOLOGY)
- Effect of steam explosion pretreatment on treatment with Pleurotus ostreatus for the enzymatic hydrolysis of rice straw(ENVIRONMENTAL BIOTECHNOLOGY)
- Ethanol stress stimulates the Ca^-mediated calcineurin/Crz1 pathway in Saccharomyces cerevisiae(GENETICS, MOLECULAR BIOLOGY, AND GENE ENGINEERING)
- Construction and Analysis of Self-Cloning Sake Yeasts that Accumulate Proline(MICROBIAL PHYSIOLOGY AND BIOTECHNOLOGY)
- Flocculation Mechanism of Hansenula anomala J224(Microbiology & Fermentation Industry)
- Treatment of Distillery Wastewater Discharged from Beet Molasses-Spirits Production Using Yeast
- Changes in Gene Expression of Commercial Baker's Yeast during an Air-Drying Process that Simulates Dried Yeast Production(BREWING AND FOOD TECHNOLOGY)
- Ethanol Fermentation of Beet Molasses by a Yeast Resistant to Distillery Waste Water and 2-Deoxyglucose
- Distribution of L-Azetidine-2-carboxylate N-Acetyltransferase in Yeast
- Evaluation of Pretreatment with Pleurotus ostreatus for Enzymatic Hydrolysis of Rice Straw(ENVIRONMENTAL BIOTECHNOLOGY)
- Cloning and Analysis of the AWA1 Gene of a Nonfoaming Mutant of a Sake Yeast
- Amplified Fragment Length Polymorphism of the AWA1 Gene of Sake Yeasts for Identification of Sake Yeast Strains(BREWING AND FOOD TECHNOLOGY)
- High Expression of Unsaturated Fatty Acid Synthesis Gene OLE1 in Sake Yeasts(Brewing and Food Technology)
- A hapl Mutation in a Laboratory Strain of Saccharomyces cerevisiae Results in Decreased Expression of Ergosterol-Related Genes and Cellular Ergosterol Content Compared to Sake Yeast(GENETICS, MOLECULAR BIOLOGY, AND GENE ENGINEERING)
- Characterization of α-Ketog1utarate-Resistant Sake Yeast Mutant with High Organic Acid Productivity
- Extracellular Soluble Polysaccharide (ESP) from Aspergillus kawachii Improves the Stability of Extracellular β-Glucosidases (EX-1 and EX-2) and Is Involved in Their Localization
- Production and Some Properties of Salt-Tolerant β-Xylosidases from a Shoyu Koji Mold, Aspergillus oryzae in Solid and Liquid Cultures
- Purification and Characterization of Extracellular and Cell Wall Bound β-Glucosidases from Aspergillus kawachii
- Effect of Ethanol on Cell Growth of Budding Yeast : Genes That Are Important for Cell Growth in the Presence of Ethanol
- A Functional Analysis of the Yeast Ubiquitin Ligase Rsp5: The Involvement of the Ubiquitin-Conjugating Enzyme Ubc4 and Poly-Ubiquitination in Ethanol-Induced Down-Regulation of Targeted Proteins
- Evaluation of Fungal Pretreatments for Enzymatic Saccharification of Rice Straw
- Functional Analysis of Genes Encoding Putative Oxidoreductases in Aspergillus oryzae, Which Are Similar to Fungal Fructosyl-Amino Acid Oxidase(ENZYMOLOGY, PROTEIN ENGINEERING, AND ENZYME TECHNOLOGY)
- Purification and Molecular Cloning of an Intracellular 3-Hydroxybutyrate-Oligomer Hydrolase from Paucimonas lemoignei(ENZYMOLOGY, PROTEIN ENGINEERING, AND ENZYME TECHNOLOGY)
- A Functional Analysis of the Yeast Ubiquitin Ligase Rsp5 : The Involvement of the Ubiquitin-Conjugating Enzyme Ubc4 and Poly-Ubiquitination in Ethanol-Induced Down-Regulation of Targeted Proteins
- QTL mapping of sake brewing characteristics of yeast
- Distribution of L-Azetidine-2-carboxylate N-Acetyltransferase in Yeast
- Screening of Carbon Dioxide-Requiring Extreme Oligotrophs from Soil
- Gene Expression Analysis of Methylotrophic Oxidoreductases Involved in the Oligotrophic Growth of Rhodococcus erythropolis N9T-4
- Automatic measurement of sake fermentation kinetics using a multi-channel gas monitor system(BREWING AND FOOD TECHNOLOGY)
- Purification of the Enzymes Responsible for the Lysis of Yeast Cells by Rarobacter faecitabidus(Microbiology & Fermentation Industry)
- Sake yeast strains have difficulty in entering a quiescent state after cell growth cessation(BREWING AND FOOD TECHNOLOGY)
- Ethanol fermentation driven by elevated expression of the G_1 cyclin gene CLN3 in sake yeast(BREWING AND FOOD TECHNOLOGY)
- Simultaneous accumulation of proline and trehalose in industrial baker's yeast enhances fermentation ability in frozen dough(MICROBIAL PHYSIOLOGY AND BIOTECHNOLOGY)
- Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production(MICROBIAL PHYSIOLOGY AND BIOTECHNOLOGY)
- Carbon monoxide utilization of an extremely oligotrophic bacterium, Rhodococcus erythropolis N9T-4(MICROBIAL PHYSIOLOGY AND BIOTECHNOLOGY)
- Functional Analysis of the C-Terminal Region of γ-Glutamyl Kinase of Saccharomyces cerevisiae
- Overexpression of the Transcription Activator Msn2 Enhances the Fermentation Ability of Industrial Baker’s Yeast in Frozen Dough
- Production of N-acetyl cis-4-hydroxy-L-proline by the yeast N-acetyltransferase Mpr1(MICROBIAL PHYSIOLOGY AND BIOTECHNOLOGY)
- Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production
- Overexpression of the Transcription Activator Msn2 Enhances the Fermentation Ability of Industrial Baker's Yeast in Frozen Dough
- Proline as a Stress Protectant in the Yeast Saccharomyces cerevisiae : Effects of Trehalose and PRO1 Gene Expression on Stress Tolerance
- Simultaneous accumulation of proline and trehalose in industrial baker's yeast enhances fermentation ability in frozen dough
- Functional Analysis of the C-Terminal Region of γ-Glutamyl Kinase of Saccharomyces cerevisiae
- Carbon monoxide utilization of an extremely oligotrophic bacterium, Rhodococcus erythropolis N9T-4
- Production of N-acetyl cis-4-hydroxy-L-proline by the yeast N-acetyltransferase Mpr1
- Involvement of methionine salvage pathway genes of Saccharomyces cerevisiae in the production of precursor compounds of dimethyl trisulfide (DMTS)(BREWING AND FOOD TECHNOLOGY)
- Diagnostic Characteristics of Symptom Combinations over Time in Meningitis Patients
- Rim15p-mediated regulation of sucrose utilization during molasses fermentation using Saccharomyces cerevisiae strain PE-2(MICROBIAL PHYSIOLOGY AND BIOTECHNOLOGY)
- Characterization of γ-glutamyl kinase mutants from Saccharomyces cerevisiae(ENZYMOLOGY, PROTEIN ENGINEERING, AND ENZYME TECHNOLOGY)
- Accelerated Alcoholic Fermentation Caused by Defective Gene Expression Related to Glucose Derepression in Saccharomyces cerevisiae
- Utilization of atmospheric ammonia by an extremely oligotrophic bacterium, Rhodococcus erythropolis N9T-4(MICROBIAL PHYSIOLOGY AND BIOTECHNOLOGY)
- Experimental Study on Microassembly by Using Liquid Surface Tension