Accelerated Alcoholic Fermentation Caused by Defective Gene Expression Related to Glucose Derepression in Saccharomyces cerevisiae
スポンサーリンク
概要
- 論文の詳細を見る
Sake yeast strains maintain high fermentation rates, even after the stationary growth phase begins. To determine the molecular mechanisms underlying this advantageous brewing property, we compared the gene expression profiles of sake and laboratory yeast strains of Saccharomyces cerevisiae during the stationary growth phase. DNA microarray analysis revealed that the sake yeast strain examined had defects in expression of the genes related to glucose derepression mediated by transcription factors Adr1p and Cat8p. Furthermore, deletion of the ADR1 and CAT8 genes slightly but statistically significantly improved the fermentation rate of a laboratory yeast strain. We also identified two loss-of-function mutations in the ADR1 gene of existing sake yeast strains. Taken together, these results indicate that the gene expression program associated with glucose derepression for yeast acts as an impediment to effective alcoholic fermentation under glucose-rich fermentative conditions.
- 公益社団法人 日本農芸化学会の論文
著者
-
Akao Takeshi
National Research Institute of Brewing
-
SHIMOI Hitoshi
National Research Institute of Brewing
-
Zhou Yan
National Research Institute Of Brewing
-
Watanabe Daisuke
National Research Institute of Brewing
-
HASHIMOTO Naoya
National Research Institute of Brewing
-
MIZUNO Megumi
National Research Institute of Brewing
関連論文
- Elevated Expression of Genes under the Control of Stress Response Element (STRE) and Msn2p in an Ethanol-Tolerance Sake Yeast Kyokai No. 11(BREWING AND FOOD TECHNOLOGY)
- Disruption of ubiquitin-related genes in laboratory yeast strains enhances ethanol production during sake brewing(BREWING AND FOOD TECHNOLOGY)
- Overexpression of MSN2 in a sake yeast strain promotes ethanol tolerance and increases ethanol production in sake brewing(BREWING AND FOOD TECHNOLOGY)
- Effect of steam explosion pretreatment on treatment with Pleurotus ostreatus for the enzymatic hydrolysis of rice straw(ENVIRONMENTAL BIOTECHNOLOGY)
- Inhibition of Mitochondrial Fragmentation during Sake Brewing Causes High Malate Production in Sake Yeast(BREWING AND FOOD TECHNOLOGY)
- YM-202204, a New Antifungal Antibiotic Produced by Marine Fungus Phoma sp.
- Ethanol stress stimulates the Ca^-mediated calcineurin/Crz1 pathway in Saccharomyces cerevisiae(GENETICS, MOLECULAR BIOLOGY, AND GENE ENGINEERING)
- Construction and Analysis of Self-Cloning Sake Yeasts that Accumulate Proline(MICROBIAL PHYSIOLOGY AND BIOTECHNOLOGY)
- Contribution of ethanol-tolerant xylanase G2 from Aspergillus oryzae on Japanese sake brewing(BREWING AND FOOD TECHNOLOGY)
- Flocculation Mechanism of Hansenula anomala J224(Microbiology & Fermentation Industry)
- Treatment of Distillery Wastewater Discharged from Beet Molasses-Spirits Production Using Yeast
- Tolerance Mechanism of the Ethanol-Tolerant Mutant of Sake Yeast
- Cloning of a Novel Tyrosinase-Encoding Gene (melB) from Aspergillus oryzae and Its Overexpression in Solid-State Culture (Rice Koji)(BREWING AND FOOD TECHNOLOGY)
- Characterization of Peptides Generated in Proteolytic Digest of Steamed Rice Grains by Sake Koji Enzymes(BREWING AND FOOD TECHNOLOGY)
- Ethanol Fermentation of Beet Molasses by a Yeast Resistant to Distillery Waste Water and 2-Deoxyglucose
- Evaluation of Pretreatment with Pleurotus ostreatus for Enzymatic Hydrolysis of Rice Straw(ENVIRONMENTAL BIOTECHNOLOGY)
- Mode of α-Amylase Production by the Shochu Koji Mold Aspergillus kawachii(Microbiology & Fermentation Technology)
- High Expression of Unsaturated Fatty Acid Synthesis Gene OLE1 in Sake Yeasts(Brewing and Food Technology)
- Characterization of α-Ketog1utarate-Resistant Sake Yeast Mutant with High Organic Acid Productivity
- Extracellular Soluble Polysaccharide (ESP) from Aspergillus kawachii Improves the Stability of Extracellular β-Glucosidases (EX-1 and EX-2) and Is Involved in Their Localization
- Production and Some Properties of Salt-Tolerant β-Xylosidases from a Shoyu Koji Mold, Aspergillus oryzae in Solid and Liquid Cultures
- Purification and Characterization of Extracellular and Cell Wall Bound β-Glucosidases from Aspergillus kawachii
- Purification and Characterization of β-1, 6-Glucanase of Streptomyces rochei Application in the Study of Yeast Cell Wall Proteins(Biochemistry & Molecular Biology)
- Molecular Cloning of CWP1: A Gene Encoding a Saccharomyces cerevisiae Cell Wall Protein Solubilized with Rarobacter faecitabidus Protease I
- Cloning and Expression of 1,2-α-Mannosidase Gene (fmanIB) from Filamentous Fungus Aspergillus oryzae : in Vivo Visualization of the FmanIBp-GFP Fusion Protein
- Evaluation of Fungal Pretreatments for Enzymatic Saccharification of Rice Straw
- Cloning and Sequence Analysis of Endoglucanase Genes from an Industrial Fungus, Aspergillus kawachii(Microbiology & Fermentation Technology)
- QTL mapping of sake brewing characteristics of yeast
- Molecular Cloning and Application of a Gene Complementing Pantothenic Acid Auxotrophy of Sake Yeast Kyokai No.7
- dffA Gene from Aspergillus oryzae Encodes L-Ornithine N^5-Oxygenase and Is Indispensable for Deferriferrichrysin Biosynthesis(GENETICS, MOLECULAR BIOLOGY, AND GENE ENGINEERING)
- Automatic measurement of sake fermentation kinetics using a multi-channel gas monitor system(BREWING AND FOOD TECHNOLOGY)
- Purification of the Enzymes Responsible for the Lysis of Yeast Cells by Rarobacter faecitabidus(Microbiology & Fermentation Industry)
- Mitochondrial Dynamics of Yeast during Sake Brewing(BREWING AND FOOD TECHNOLOGY)
- Analysis of the Pyruvate Permease Gene (JEN1) in Glucose Derepression Yeast (Saccharomyces cerevisiae) Isolated from a 2-Deoxyglucose-tolerant Mutant, and Its Application to Sake Making(Microbiology & Fermentation Technology)
- Sake yeast strains have difficulty in entering a quiescent state after cell growth cessation(BREWING AND FOOD TECHNOLOGY)
- Ethanol fermentation driven by elevated expression of the G_1 cyclin gene CLN3 in sake yeast(BREWING AND FOOD TECHNOLOGY)
- Lack of endoplasmic reticulum 1,2-α-mannosidase activity that trims N-glycan Man_9GlcNAc_2 to Man_8GlcNAc_2 isomer B in a manE gene disruptant of Aspergillus oryzae(GENETICS, MOLECULAR BIOLOGY, AND GENE ENGINEERING)
- Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production(MICROBIAL PHYSIOLOGY AND BIOTECHNOLOGY)
- Lack of endoplasmic reticulum 1,2-αmannosidase activity that trims N-glycan Man_9GlcNAc_2 to Man_8GlcNAc_2 isomer B in a manE gene disruptant of Aspergillus oryzae
- Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production
- Isolation of Uracil Auxotrophic Mutants of Saccharomyces cerevisiae Unable to Reduce 2, 3, 5-Triphenyltetrazolium Chloride
- The transfer of stable ^Cs from rice to Japanese sake(BREWING AND FOOD TECHNOLOGY)
- The transfer of radioactive cesium and potassium from rice to sake(BREWING AND FOOD TECHNOLOGY)
- Involvement of methionine salvage pathway genes of Saccharomyces cerevisiae in the production of precursor compounds of dimethyl trisulfide (DMTS)(BREWING AND FOOD TECHNOLOGY)
- Rim15p-mediated regulation of sucrose utilization during molasses fermentation using Saccharomyces cerevisiae strain PE-2(MICROBIAL PHYSIOLOGY AND BIOTECHNOLOGY)
- Accelerated Alcoholic Fermentation Caused by Defective Gene Expression Related to Glucose Derepression in Saccharomyces cerevisiae
- The transfer of stable ^Cs from rice to Japanese sake