Overexpression of MSN2 in a sake yeast strain promotes ethanol tolerance and increases ethanol production in sake brewing(BREWING AND FOOD TECHNOLOGY)
スポンサーリンク
概要
- 論文の詳細を見る
To improve the ethanol tolerance of sake yeast we constructed a sake yeast strain that overexpresses MSN2, a transcription factor that is activated by several environmental stresses, including ethanol. We showed that this strain is more ethanol tolerant and produced more ethanol in a sake mash than a control strain.
著者
-
Akao Takeshi
National Research Institute of Brewing
-
SHIMOI Hitoshi
National Research Institute of Brewing
-
Shimoi H
Hiroshima Univ. Higashihiroshima Jpn
-
Shimoi H
Hiroshima Univ. Higashi‐hiroshima Jpn
-
Shimoi Hitoshi
Department Of Molecular Biotechnology Graduate School Of Advanced Sciences Of Matter Hiroshima Unive
-
Watanabe Mamoru
National Research Institute Of Brewing:graduate School Of Advanced Sciences Of Matter Hiroshima Univ
-
Watanabe Daisuke
National Research Institute of Brewing
-
Watanabe Mamoru
National Institute For Reseach In Inorganic Materials
関連論文
- Elevated Expression of Genes under the Control of Stress Response Element (STRE) and Msn2p in an Ethanol-Tolerance Sake Yeast Kyokai No. 11(BREWING AND FOOD TECHNOLOGY)
- Disruption of ubiquitin-related genes in laboratory yeast strains enhances ethanol production during sake brewing(BREWING AND FOOD TECHNOLOGY)
- Overexpression of MSN2 in a sake yeast strain promotes ethanol tolerance and increases ethanol production in sake brewing(BREWING AND FOOD TECHNOLOGY)
- Effect of steam explosion pretreatment on treatment with Pleurotus ostreatus for the enzymatic hydrolysis of rice straw(ENVIRONMENTAL BIOTECHNOLOGY)
- Inhibition of Mitochondrial Fragmentation during Sake Brewing Causes High Malate Production in Sake Yeast(BREWING AND FOOD TECHNOLOGY)
- YM-202204, a New Antifungal Antibiotic Produced by Marine Fungus Phoma sp.
- Ethanol stress stimulates the Ca^-mediated calcineurin/Crz1 pathway in Saccharomyces cerevisiae(GENETICS, MOLECULAR BIOLOGY, AND GENE ENGINEERING)
- Construction and Analysis of Self-Cloning Sake Yeasts that Accumulate Proline(MICROBIAL PHYSIOLOGY AND BIOTECHNOLOGY)
- Flocculation Mechanism of Hansenula anomala J224(Microbiology & Fermentation Industry)
- Treatment of Distillery Wastewater Discharged from Beet Molasses-Spirits Production Using Yeast
- Tolerance Mechanism of the Ethanol-Tolerant Mutant of Sake Yeast
- Cloning of a Novel Tyrosinase-Encoding Gene (melB) from Aspergillus oryzae and Its Overexpression in Solid-State Culture (Rice Koji)(BREWING AND FOOD TECHNOLOGY)
- Ethanol Fermentation of Beet Molasses by a Yeast Resistant to Distillery Waste Water and 2-Deoxyglucose
- Evaluation of Pretreatment with Pleurotus ostreatus for Enzymatic Hydrolysis of Rice Straw(ENVIRONMENTAL BIOTECHNOLOGY)
- Mode of α-Amylase Production by the Shochu Koji Mold Aspergillus kawachii(Microbiology & Fermentation Technology)
- Cloning and Analysis of the AWA1 Gene of a Nonfoaming Mutant of a Sake Yeast
- Amplified Fragment Length Polymorphism of the AWA1 Gene of Sake Yeasts for Identification of Sake Yeast Strains(BREWING AND FOOD TECHNOLOGY)
- High Expression of Unsaturated Fatty Acid Synthesis Gene OLE1 in Sake Yeasts(Brewing and Food Technology)
- A hapl Mutation in a Laboratory Strain of Saccharomyces cerevisiae Results in Decreased Expression of Ergosterol-Related Genes and Cellular Ergosterol Content Compared to Sake Yeast(GENETICS, MOLECULAR BIOLOGY, AND GENE ENGINEERING)
- Characterization of α-Ketog1utarate-Resistant Sake Yeast Mutant with High Organic Acid Productivity
- Extracellular Soluble Polysaccharide (ESP) from Aspergillus kawachii Improves the Stability of Extracellular β-Glucosidases (EX-1 and EX-2) and Is Involved in Their Localization
- Production and Some Properties of Salt-Tolerant β-Xylosidases from a Shoyu Koji Mold, Aspergillus oryzae in Solid and Liquid Cultures
- Purification and Characterization of Extracellular and Cell Wall Bound β-Glucosidases from Aspergillus kawachii
- Purification and Characterization of β-1, 6-Glucanase of Streptomyces rochei Application in the Study of Yeast Cell Wall Proteins(Biochemistry & Molecular Biology)
- Effect of Ethanol on Cell Growth of Budding Yeast : Genes That Are Important for Cell Growth in the Presence of Ethanol
- Molecular Cloning of CWP1: A Gene Encoding a Saccharomyces cerevisiae Cell Wall Protein Solubilized with Rarobacter faecitabidus Protease I
- Cloning and Expression of 1,2-α-Mannosidase Gene (fmanIB) from Filamentous Fungus Aspergillus oryzae : in Vivo Visualization of the FmanIBp-GFP Fusion Protein
- Evaluation of Fungal Pretreatments for Enzymatic Saccharification of Rice Straw
- Cloning and Sequence Analysis of Endoglucanase Genes from an Industrial Fungus, Aspergillus kawachii(Microbiology & Fermentation Technology)
- Simulation Study on the Measurements of Diffusion Coefficients in Solid Materials by Short-lived Radiotracer Beams
- QTL mapping of sake brewing characteristics of yeast
- Molecular Cloning and Application of a Gene Complementing Pantothenic Acid Auxotrophy of Sake Yeast Kyokai No.7
- dffA Gene from Aspergillus oryzae Encodes L-Ornithine N^5-Oxygenase and Is Indispensable for Deferriferrichrysin Biosynthesis(GENETICS, MOLECULAR BIOLOGY, AND GENE ENGINEERING)
- Automatic measurement of sake fermentation kinetics using a multi-channel gas monitor system(BREWING AND FOOD TECHNOLOGY)
- Purification of the Enzymes Responsible for the Lysis of Yeast Cells by Rarobacter faecitabidus(Microbiology & Fermentation Industry)
- Mitochondrial Dynamics of Yeast during Sake Brewing(BREWING AND FOOD TECHNOLOGY)
- Analysis of the Pyruvate Permease Gene (JEN1) in Glucose Derepression Yeast (Saccharomyces cerevisiae) Isolated from a 2-Deoxyglucose-tolerant Mutant, and Its Application to Sake Making(Microbiology & Fermentation Technology)
- Sake yeast strains have difficulty in entering a quiescent state after cell growth cessation(BREWING AND FOOD TECHNOLOGY)
- Na^+/Li^+ Exchange in One-Dimensional Tunnels of the Framework Structure
- Ethanol fermentation driven by elevated expression of the G_1 cyclin gene CLN3 in sake yeast(BREWING AND FOOD TECHNOLOGY)
- Lack of endoplasmic reticulum 1,2-α-mannosidase activity that trims N-glycan Man_9GlcNAc_2 to Man_8GlcNAc_2 isomer B in a manE gene disruptant of Aspergillus oryzae(GENETICS, MOLECULAR BIOLOGY, AND GENE ENGINEERING)
- Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production(MICROBIAL PHYSIOLOGY AND BIOTECHNOLOGY)
- Lack of endoplasmic reticulum 1,2-αmannosidase activity that trims N-glycan Man_9GlcNAc_2 to Man_8GlcNAc_2 isomer B in a manE gene disruptant of Aspergillus oryzae
- Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production
- Isolation of Uracil Auxotrophic Mutants of Saccharomyces cerevisiae Unable to Reduce 2, 3, 5-Triphenyltetrazolium Chloride
- The transfer of stable ^Cs from rice to Japanese sake(BREWING AND FOOD TECHNOLOGY)
- Simulation Study on the Measurements of Diffusion Coefficients in Solid Materials by Short-lived Radiotracer Beams
- The transfer of radioactive cesium and potassium from rice to sake(BREWING AND FOOD TECHNOLOGY)
- Involvement of methionine salvage pathway genes of Saccharomyces cerevisiae in the production of precursor compounds of dimethyl trisulfide (DMTS)(BREWING AND FOOD TECHNOLOGY)
- Rim15p-mediated regulation of sucrose utilization during molasses fermentation using Saccharomyces cerevisiae strain PE-2(MICROBIAL PHYSIOLOGY AND BIOTECHNOLOGY)
- Accelerated Alcoholic Fermentation Caused by Defective Gene Expression Related to Glucose Derepression in Saccharomyces cerevisiae
- Na+/H+ Ion-exchange process on layered hydrous titanium dioxide.
- The transfer of stable ^Cs from rice to Japanese sake