Effects of Gas-Flow-Rate Ratio on Electrical Characteristics and Fowler-Nordheim Stress Resistance of Si Oxynitride Grown with Helicon-Wave-Excited N_2-Ar plasma
スポンサーリンク
概要
- 論文の詳細を見る
The effects of the gas-flow-rate ratio on the electrical characteristics and the Fowler-Nordheim(FN)current stress resistance were investigated for Si oxynitride grown with helicon-wave excited(HWP)N_2-Ar plasma. The flow-rate ratio of N_2[N_2/(N_2+Ar)]was varied from 100%(N_2 only)to 60%. The X-ray photoelectron spectroscopic data(XPS)indicated that uniform Si oxynitride(probably Si_2N_2O)was formed through the entire film thickness when the N_2 gas-flow-rate ratio was 100%(N_2 only), though a small amount of Si suboxide was included. The capacitance-voltage(C-V)measurements revealed that the interface-state density was the lowest in this flow-rate ratio case, as the grown layer was postannealed at moderate temperatures(300-500℃). Fowler-Nordheim current injection was performed using the metal/Si-oxynitride/Si capacitors thus fabricated. The shift of the threshold voltage was the lowest for the sample grown without Ar mixing. It was smaller than that for the thermal Si oxide(SiO_2)grown at 900℃.The results of FN current stress resistance experiments were explained in terms of the surface plasmon and avalanche breakdown models.
- 社団法人応用物理学会の論文
- 2000-03-15
著者
-
Ikoma Hideaki
Faculty Of Science And Technology Science University Of Tokyo
-
Oka Fumihito
Faculty Of Science And Technology Science University Of Tokyo
-
TACHIKAWA Masayuki
Faculty of Science and Technology, Science University of Tokyo
-
TSUKUDA Tatsuaki
Faculty of Science and Technology, Science University of Tokyo
-
Tsukuda Tatsuaki
Faculty Of Science And Technology Science University Of Tokyo
-
Tachikawa M
Faculty Of Science And Technology Science University Of Tokyo
-
Tachikawa Masayuki
Faculty Of Science And Technology Science University Of Tokyo
関連論文
- Selenium Passivation of GaAs with Se/NH_4OH Solution
- X-Ray Photoelectron Spectroscopic Study of Oxidation of InP II: Thermal Oxides Grown at High Temperatures
- Effects of Surface Orientation and Molar Ratio of (Sr_xCa_y)F_2 Films on Electrical Characteristics of Metal /Fluoride/GaAs Structures
- Effect of Molar Ratio of (Ca_xBa_y)F_2 Films on Electrical Characteristics of Metal/Fluoride/InP Structures
- Effect of Post-Thermal Annealing on the Various Sulfur Passivations of GaAs
- Antimony Passivation of InP
- Si Oxynitridation with Helicon-Wave Excited Nitrogen Plasma:Effects of Plasma Divergence and Concentration on Substrates
- Oxynitridation of Silicon Using Helicon-Wave Excited and Inductively-Coupled Nitrogen Plasma
- Internal Photoemission and X-Ray Photoelectron Speetroseopic Studies of Sulfur-Passivated GaAs
- X-Ray Photoelectron Spectroscopy and Electrical Characteristics of Na_2S-Passivated GaAs Surface : Comparison with (NH_4)_2S_x-Passivation
- Helicon-Wave-Excited Plasma Nitridation of GaAs After Short-Time Plasma Oxidation for Fabrication of Damage-Free GaN/GaAs Interface
- Growth of "Oxide-Less" GaN Layer by Helicon-Wave Excited N_2-Ar Plasma Treatment of Al/GaAs Structure
- Effects of Gas-Flow-Rate Ratio on Electrical Characteristics and Fowler-Nordheim Stress Resistance of Si Oxynitride Grown with Helicon-Wave-Excited N_2-Ar plasma
- Magnetically Excited Plasma Oxidation of InP : Effects of Ar Mixing and Substrate Heating
- Magnetically Excited Plasma Oxidation of InP
- X-Ray Photoelectron Spectroscopic Study of Oxidation of InP
- Analysis of Si Schottky Barrier Characteristics Based on a New Interfacial Layer Model
- Electrical Characteristics and Surface Chemistry of P_2S_5-Passivated GaAs
- Helicon-Wave-Excited Plasma Treatment of SiO_x Films Evaporated on Si Substrate
- Magnetically Excited Plasma Oxidation of Si
- Low-Temperature Si Oxidation Using Inductively Coupled Oxygen-Argon Mixed Plasma
- GaN-Passivation of GaAs with Less Plasma Damages : Effects of Input Plasma Power, Substrate Heating and Post-Thermal Annealing
- Effects of Postannealing of Electrical Characteristics and Fowler-Nordheim Current Stress Resistance of Si Oxynitride Grown in Helicon-Wave-Excited O_2-N_2-Ar Plasma
- Silicon Oxynitridation with Inductively Coupled Oxygen-Nitrogen Mixed Plasma
- Magnetically Excited Plasma Oxidation of GaAs
- Improved Electrical Characteristics of Al_2O_3/InP Structure by Combination of Sulfur Passivation and Forming Gas Annealing
- Al_2O_3/InP Structure with Less Oxides of InP Fabricated by Helicon-Wave Exicited O_2-Ar Plasma Treatment of Al/InP
- Possible Existence of a Surplus (Oxygen-Excess) Ga Oxide in the Thermal Oxide of GaAs
- Sb and Bi Passivation Effects on GaAs : Semiconductors
- X-Ray Photoelectron Spectroscopic Analysis of the Oxide of GaAs
- Low-Temperature Growth of Si Oxide with Good Electrical Qualities Using Helicon-Wave-Excited O_2-Ar Plasma and Forming Gas Annealing
- Oxidation of GaAs Using Helicon-Wave Excited Nitrogen-Oxygen-Argon Plasma
- Effect of Surface Treatments after HF Etching on Oxidation of Si
- Magnetically Excited Plasma Oxynitridation of Si at Room Temperature