高精度特異値計算ルーチンの開発とその性能評価(数値計算)
スポンサーリンク
概要
- 論文の詳細を見る
高精度かつ高速に行列を特異値分解するために, 我々は, dLV(離散ロトカ・ボルテラ: discrete Lotka-Volterra)系による新たな特異値分解ライブラリを開発している.この一環として, 本論文では, 特異値のみを計算するmdLVs(原点シフト付きmodified dLV)法の実装ならびに性能評価を行う.既存ルーチンとしては, 線形数値計算ライブラリLAPACKにおけるDBDSQRとDLASQがある.DBDSQRは, QRs法に基づいた特異値分解ルーチンであるが, 大規模特異値計算において計算速度, 精度がともに十分でない.一方, DLASQは, dqds法に基づいた高速高精度な特異値計算ルーチンであるが, 収束性が証明されていない.そのため, 現在利用されている計算方法は, QRs法である.これらに比べ, mdLVs法では, 収束性が証明されており, DLASQより速度では劣るものの, 理論的には, 同等以上の高精度性を持つ.本論文では, mdLVs法を適用するために4種類の実装手法を提案する.これらの手法の有効性を調べるために, 複数のCPUを用いて実行時間と精度の比較実験を行う.その結果, mdLVs法の理論どおりの高精度な性能を引き出す実装に成功した.
- 2005-08-15
著者
-
中村 佳正
京都大学大学院情報学研究科数理工学専攻
-
高田 雅美
奈良女子大学人間文化研究科
-
木村 欣司
京都大学大学院情報学研究科
-
中村 佳正
京都大学大学院情報学研究科
-
?田 雅美
奈良女子大学
-
岩崎 雅史
京都府立大学生命環境学部
-
高田 雅美
独立行政法人科学技術振興機構さきがけ
-
岩崎 雅史
独立行政法人科学技術振興機構さきがけ
-
木村 欣司
九州大学大学院数理学研究院
-
木村 欣司
京都大学
-
中村 佳正
京都大学
-
木村 欣司
京都大学大学院情報学研究科附属情報教育推進センター:京都大学大学院情報学研究科数理工学専攻
-
高田 雅美
独立行政法人 科学技術振興機構:京都大学大学院 情報学研究科 数理工学専攻
-
岩崎 雅史
独立行政法人 科学技術振興機構:京都大学大学院 情報学研究科 数理工学専攻
-
中村 佳正
京都大学大学院 情報学研究科 数理工学専攻:独立行政法人 科学技術振興機構
関連論文
- 複素非対称行列向け固有値解法のCSX600による高速化(HPC-10 : 自動チューニングI)
- 多倍長環境における最適PWM問題の数値解法
- 対称三重対角行列向けマルチシフトQR法の漸近的収束性解析(理論,行列・固有値問題の解法とその応用,平成20年研究部会連合発表)
- Kakarala-Ogunbonaの画像分解における特異値の近接度を低減させるアルゴリズム(画像処理)
- 画像圧縮に適した特異値分解アルゴリズムの考察(科学技術計算,「ハイパフォーマンスコンピューティングとアーキテクチャの評価」に関する北海道ワークショップ(HOKKE-2006))
- 画像圧縮に適した特異値分解アルゴリズムの考察(科学技術計算, 「ハイパフォーマンスコンピューティングとアーキテクチャの評価」に関する北海道ワークショップ(HOKKE-2006))
- 固有多項式の次数と最小多項式の次数が異なっている行列に対する直接法またはクリロフ部分空間法による固有多項式の計算とそれぞれの方法の問題点の紹介
- 離散ハングリーロトカ・ボルテラ系による固有多項式の数値的因数分解(理論,応用可積分系,平成20年研究部会連合発表会)
- 上二重対角行列の最小特異値の下界に関する最近の進展について (数値解析と数値計算アルゴリズムの最近の展開)
- シフトの計算回数の制限を用いたmdLVs法の高速化
- 正方行列向け特異値分解のCUDAによる高速化
- JSIAM Letters 誌の創刊について
- 日本応用数理学会の次なる発展のために
- なぜ可積分な特異値計算アルゴリズムは高精度か(ソリトン理論から可積分数理へ:"de nouvelles perspectives ")
- 平成17年春の研究部会連合発表会
- 可積分系のグラフ論的描像について (可積分系数理の展望と応用)
- 特異値分解法の可積分アルゴリズムINT-SVD (微分方程式の数値解法と線形計算)
- なぜか役立つ可積分系(アイ・サイ問答教室)
- 電車ノイズを含む地電位差データからの矩形状地震前駆的シグナル自動抽出
- 高速SVDアルゴリズムとその応用((地球環境を守る)大規模シミュレーション)
- 非線形方程式の解法による行列の特異値分解アルゴリズム
- 固有値分解を目的としたツイスト分解法による分割統治法の改善(行列・固有値問題の解法とその応用,平成20年研究部会連合発表)
- 2次非線形方程式系の解法に基づく行列の対角化法 (計算科学の基盤技術としての高速アルゴリズムとその周辺)
- 特異値分解法I-SVDにおける左特異ベクトル計算部の改善(ウェーブレット,平成20年研究部会連合発表会)
- 特異値計算のmdLVsアルゴリズムと特異値分解のI-SVDアルゴリズムにおける最近の進展 (流体計算における高速アルゴリズムの理論とその応用)
- 高次収束するSteffensen型反復解法(数値計算アルゴリズムの研究)
- ニュートン・ステファンセン・シャンクス(離散可積分系と離散解析)
- 分割統治法とツイスト分解法による新しい特異値分解アルゴリズム(数値アルゴリズム)
- ロトカ・ボルテラ系による特異値計算アルゴリズムの並列化(一般講演1)
- 特異値分解法の革新をめざして (特集 次世代統合シミュレーション技術)
- 有限体上のLU分解の高速化とそれに付随するアルゴリズムの高速化
- 特異値計算アルゴリズムの性能評価のための条件数の大きい行列作成法
- 特異値計算アルゴリズムの性能評価のための条件数の大きい行列作成法
- グレブナ基底を用いない連立代数方程式の非線形固有値問題への変換法と非線形固有値問題の解法について
- 10. ソリトン理論と数値計真法 (非線形現象の不思議)
- 行列の特異値計算のmdLVsアルゴリズムにおける最近の進展 (非線形波動現象の数理と応用)
- 行列の特異値を求めるアルゴリズムに含まれた離散可積分系に対する中心多様体理論アプローチ(数値シミュレーションを支える応用数理)
- 上2重対角のテスト行列を作成するためのアルゴリズム
- 固有分解と特異値分解用ライブラリの性能評価のためのテスト行列に関する考察(数値計算1)
- 高速特異値分解のためのライブラリ開発(数値アルゴリズム)
- 実対称3重対角行列の高精度ツイスト分解とその特異値分解への応用(行列・固有値問題の解法とその応用, 平成17年研究部会連合発表会)
- 特異値計算アルゴリズムdLVの基本性質について(応用可積分系, 平成17年研究部会連合発表会)
- 高精度特異値計算ルーチンの開発とその性能評価(数値計算)
- 新しい特異値計算ルーチンによる対称3重対角行列の固有値計算の評価(数値計算アルゴリズム(1), 「ハイパフォーマンスコンピューティングとアーキテクチャの評価」に関する北海道ワークショップ(HOKKE-2005))
- 新しい特異値計算ルーチンによる対称3重対角行列の固有値計算の評価(数値計算アルゴリズム(1), 「ハイパフォーマンスコンピューティングとアーキテクチャの評価」に関する北海道ワークショップ(HOKKE-2005))
- 新しい特異値計算ルーチンによる対称3重対角行列の固有値計算の評価
- 連分数と可積分系 (離散可積分系の研究の進展 : 超離散化・量子化)
- 固有値・特異値分解アルゴリズムの性能評価のための数理
- 近接特異値を持つ行列に対応したI-SVD法の並列化とその評価
- 密正方行列特異値分解における並列I-SVD法の特性を用いた後処理の高速化
- シフトの計算回数の制限を用いたmdLVs法の高速化
- 多倍長環境における直交多項式理論に基づく最適なPWM波形の数値計算アルゴリズム
- 離散戸田方程式を用いた大規模疎行列の連立一次方程式, 行列式, 固有多項式の計算法(応用可積分系, 平成17年研究部会連合発表会)
- Recent Topics on Symmetries and Hidden Symmetries of Nonlinear Fields
- 非線形可積分系--無限自由度と離散時間系への道標 (古典力学の輝き--未解決問題と新しい発見)
- Decoherence-free subspaceにおける量子ゲートについて
- i アプリによる数値計算実アプリケーションの実装例
- 整数行列の固有多項式計算における密行列と疎行列の両方に対応した実装の方法と LinBox との比較
- (82)ある創成科目の計画立案と実施状況 : 1年生向け創成科目の例(第21セッション 創成教育(I))
- とびらの言葉
- アルゴリズムと可積分系 : 可積分系によるアルゴリズム開発をめざして (高機能化を目指した非線形システム制御総合特集号-II)
- セパラトリックスをもつ可積分系の広田差分について (離散可積分系の応用数理)
- 戸田分子方程式のタウ関数による Laplace 変換の連分数展開(漸近解析に於る幾何学的方法)
- 離散時間可積分系と数値計算法
- 確率分布族と直交多項式の可積分変形 : モーメント問題とタウ関数のかかわり(非線形可積分系の応用数理)
- ラボラトリーズ 京都大学情報学研究科で推進する全学共通情報教育プログラムについて--計算科学科目を中心として
- About a parallel implementation of the polynomial interpolation method (数式処理研究の新たな発展--RIMS共同研究報告集)
- 京都大学情報学研究科で推進する全学共通情報教育プログラムについて : 計算科学科目を中心として(ラボラトリーズ)
- 離散ハングリー戸田方程式に基づく Totally Nonnegative 行列に対する固有値計算 (科学技術計算における理論と応用の新展開)
- On some properties of a discrete hungry Lotka-Volterra system of multiplicative type
- 固有値分解を目的としたツイスト分解法による分割統治法の改善
- 対称三重対角行列向けマルチシフトQR法の漸近的収束性解析
- ハングリー型の離散可積分系と非対称行列の固有値計算 : 可積分アルゴリズムにおける最近の発展(サーベイ,応用可積分系研究部会)
- 特異値計算アルゴリズムdqds法およびm2dLVs法のための新しいシフト戦略
- アルゴリズム・情報幾何・非線形可積分系(非線形可積分系による応用解析)
- 非線形可積分系の応用解析の新展開(非線型可積分系の研究の現状と展望)
- 非線形問題としての情報空間--非線形可積分系の応用解析から (情報空間)
- 非線形可積分系の応用解析の進展:ニューロダイナミクスにおける可積分系の視点(非線型可積分系の研究の現状と展望)
- 非線形可積分系の応用解析の展開
- 非線形可積分系の応用解析の試み
- TOPOLOGY OF SPACES OF RATIONAL MAPPS AND NONLINEAR INTEGRABLE SYSTEMS OF LAX TYPE
- A Self-Dual Yang-Mills Hierarchy : Periodic Reduction, Ansatz Solutions and Transformation Group
- 特異値分解アルゴリズムの性能評価のための大きな条件数を持つ行列作成
- 再直交化付きブロック逆反復法による固有ベクトルの並列計算
- ハングリー型の離散可積分系と非対称行列の固有値計算 : 可積分アルゴリズムにおける最近の発展