An Inverter-Based Wideband Low-Noise Amplifier in 40 nm Complementary Metal Oxide Semiconductor
スポンサーリンク
概要
- 論文の詳細を見る
Multistandard RF chips have been highly demanded for multipurpose wireless applications. However, in RF circuits, a low-noise amplifier (LNA) plays an important role in determining the receiver's performance. In this paper, we present a scalable wideband LNA based on complementary metal oxide semiconductor (CMOS) inverters, employing two bandwidth expansion techniques to achieve a large bandwidth without using inductors. Fabricated by the 40 nm CMOS process, the LNA attains 0.1--8.0 GHz of flat bandwidth with S_{21}=17.5 dB and S_{11}\leq -10 dB. The minimum NF measured is 5.1 dB and the power consumption is 14.3 mW at 1.3 V. The LNA core circuit is as small as 0.001 mm2 since no large passive device is used. A study of LNA scalability has been conducted by comparing the performances of circuits with the same topology fabricated by the 65, 90, and 180 nm CMOS processes.
- 2012-04-25
著者
-
Tanoi Satoru
Solution Science Research Laboratory (SSRL), Tokyo Institute of Technology
-
Dharmiza Dayang
Solution Science Research Laboratory, Tokyo Institute of Technology
-
Masu Kazuya
Solutions Research Laboratory Tokyo Institute Of Technology
-
Ishihara Noboru
Solutions Research Laboratory Tokyo Institute Of Technology
-
Ito Hiroyuki
Solutions Research Laboratory, Tokyo Institute of Technology
-
Dharmiza Dayang
Solutions Research Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan
-
Oturu Mototada
Solutions Research Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan
-
Tanoi Satoru
Solutions Research Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan
関連論文
- A Universal Equivalent Circuit Model for Ceramic Capacitors
- Layout-Aware Compact Model of MOSFET Characteristics Variations Induced by STI Stress
- C-12-43 CMOS Power Amplifier in 65nm Technology
- C-12-37 CMOS Inverter-based Wideband LNA in 65nm Technology
- Analytical Estimation of Path-Delay Variation for Multi-Threshold CMOS Circuits
- 2-Port Modeling Technique for Surface-Mount Passive Components Using Partial Inductance Concept
- A Time-Slicing Ring Oscillator for Capturing Time-Dependent Delay Degradation and Power Supply Voltage Fluctuation
- One-Shot Voltage-Measurement Circuit Utilizing Process Variation
- Application of Correlation-Based Regression Analysis for Improvement of Power Distribution Network
- Statistical Modeling of a Via Distribution for Yield Estimation(Interconnect,VLSI Design and CAD Algorithms)
- Wire Length Distribution Model for System LSI(Interconnect, VLSI Design and CAD Algorithms)
- Evaluation of X Architecture Using Interconnect Length Distribution(Interconnect, VLSI Design and CAD Algorithms)
- Circuit Performance Prediction Considering Core Utilization with Interconnect Length Distribution Model(Prediction and Analysis, VLSI Design and CAD Algorithms)
- RF Attenuation Characteristics for In Vivo Wireless Healthcare Chip
- Optimization Technique of Number of Interconnect Layers and Circuit Area Based on Wire Length Distribution
- in-vivo Wireless Communication System for Bio MEMS Sensors
- 2.4--10 GHz Low-Noise Injection-Locked Ring Voltage Controlled Oscillator in 90 nm Complementary Metal Oxide Semiconductor
- Linear Time Calculation of On-Chip Power Distribution Network Capacitance Considering State-Dependence
- RF CMOS Integrated Circuit : History, Current Status and Future Prospects
- An Inductorless Phase-Locked Loop with Pulse Injection Locking Technique in 90 nm CMOS (集積回路)
- 0.1V 13GHz Transformer-Based Quadrature Voltage-Controlled Oscillator with a Capacitor Coupling Technique in 90nm Complementary Metal Oxide Semiconductor (Special Issue : Solid State Devices and Materials (2))
- RF signal generator using time domain harmonic suppression technique in 90nm CMOS
- A Three-Stage Inverter-Based Stacked Power Amplifier in 65 nm Complementary Metal Oxide Semiconductor Process
- A Study of Digitally Controllable Radio Frequency Micro Electro Mechanical Systems Inductor
- Planar Solenoidal Inductor in Radio Frequency Micro-Electro-Mechanical Systems Technology for Variable Inductor with Wide Tunable Range and High Quality Factor
- 1.2--17.6 GHz Ring-Oscillator-Based Phase-Locked Loop with Injection Locking in 65 nm Complementary Metal Oxide Semiconductor
- An Inverter-Based Wideband Low-Noise Amplifier in 40 nm Complementary Metal Oxide Semiconductor
- Injection-locked fractional frequency multiplier with automatic reference pulse-selection technique
- A Ring-VCO-Based Injection-Locked Frequency Multiplier with Novel Pulse Generation Technique in 65nm CMOS
- An Inductorless Phase-Locked Loop with Pulse Injection Locking Technique in 90nm CMOS
- Fractionally Injection-Locked Frequency Multiplication Technique with Multi-Phase Ring Voltage-Controlled Oscillator
- C-12-11 Indutors and Transformers on 65 nm CMOS Technology for 60 GHz Applications
- Fractionally Injection-Locked Frequency Multiplication Technique with Multi-Phase Ring Voltage-Controlled Oscillator (Special Issue : Solid State Devices and Materials)
- C-12-23 A1.8 GHz, 2.2 Watt Fully Integrated CMOS Power Amplifier
- A Ring-VCO-Based Injection-Locked Frequency Multiplier with Novel Pulse Generation Technique in 65nm CMOS