RF signal generator using time domain harmonic suppression technique in 90nm CMOS
スポンサーリンク
概要
- 論文の詳細を見る
This paper proposes an RF signal generator using a time domain harmonic suppression technique based on Fourier series analysis. The circuit consists of four differential ring voltage control oscillators (VCO's) with phase differences and the pulse signal summing circuit. By summing pulse signals from VCO's with appropriate phase differences determined by Fourier series in time domain, the third and fifth harmonics can be cancelled without filters. To confirm the validity, a prototypal RF signal generator was fabricated in 90-nm CMOS technology. As a result, we succeeded in generating an RF signal from digital pulse signals. The frequency range is from 1.1 to 3.7GHz with 1-V power supply. The suppression of both the third and fifth harmonics are below -48dBc at 1.1GHz and -42dBc at 3.7GHz.
著者
-
Amakawa Shuhei
Solution Science Research Laboratory (SSRL), Tokyo Institute of Technology
-
Masu Kazuya
Solutions Research Laboratory Tokyo Institute Of Technology
-
Ishihara Noboru
Solutions Research Laboratory Tokyo Institute Of Technology
-
Nakano Kazuo
Solutions Science Research Laboratory, Tokyo Institute of Technology
-
Masu Kazuya
Solutions Science Research Laboratory, Tokyo Institute of Technology
-
Amakawa Shuhei
Solutions Science Research Laboratory, Tokyo Institute of Technology
関連論文
- A Universal Equivalent Circuit Model for Ceramic Capacitors
- Layout-Aware Compact Model of MOSFET Characteristics Variations Induced by STI Stress
- C-12-43 CMOS Power Amplifier in 65nm Technology
- Analytical Estimation of Path-Delay Variation for Multi-Threshold CMOS Circuits
- 2-Port Modeling Technique for Surface-Mount Passive Components Using Partial Inductance Concept
- A Time-Slicing Ring Oscillator for Capturing Time-Dependent Delay Degradation and Power Supply Voltage Fluctuation
- One-Shot Voltage-Measurement Circuit Utilizing Process Variation
- Application of Correlation-Based Regression Analysis for Improvement of Power Distribution Network
- Statistical Modeling of a Via Distribution for Yield Estimation(Interconnect,VLSI Design and CAD Algorithms)
- Wire Length Distribution Model for System LSI(Interconnect, VLSI Design and CAD Algorithms)
- Evaluation of X Architecture Using Interconnect Length Distribution(Interconnect, VLSI Design and CAD Algorithms)
- Circuit Performance Prediction Considering Core Utilization with Interconnect Length Distribution Model(Prediction and Analysis, VLSI Design and CAD Algorithms)
- RF Attenuation Characteristics for In Vivo Wireless Healthcare Chip
- Optimization Technique of Number of Interconnect Layers and Circuit Area Based on Wire Length Distribution
- in-vivo Wireless Communication System for Bio MEMS Sensors
- 2.4--10 GHz Low-Noise Injection-Locked Ring Voltage Controlled Oscillator in 90 nm Complementary Metal Oxide Semiconductor
- Linear Time Calculation of On-Chip Power Distribution Network Capacitance Considering State-Dependence
- RF CMOS Integrated Circuit : History, Current Status and Future Prospects
- An Inductorless Phase-Locked Loop with Pulse Injection Locking Technique in 90 nm CMOS (集積回路)
- 0.1V 13GHz Transformer-Based Quadrature Voltage-Controlled Oscillator with a Capacitor Coupling Technique in 90nm Complementary Metal Oxide Semiconductor (Special Issue : Solid State Devices and Materials (2))
- RF signal generator using time domain harmonic suppression technique in 90nm CMOS
- A Three-Stage Inverter-Based Stacked Power Amplifier in 65 nm Complementary Metal Oxide Semiconductor Process
- A Study of Digitally Controllable Radio Frequency Micro Electro Mechanical Systems Inductor
- Planar Solenoidal Inductor in Radio Frequency Micro-Electro-Mechanical Systems Technology for Variable Inductor with Wide Tunable Range and High Quality Factor
- 1.2--17.6 GHz Ring-Oscillator-Based Phase-Locked Loop with Injection Locking in 65 nm Complementary Metal Oxide Semiconductor
- An Inverter-Based Wideband Low-Noise Amplifier in 40 nm Complementary Metal Oxide Semiconductor
- Injection-locked fractional frequency multiplier with automatic reference pulse-selection technique
- A Ring-VCO-Based Injection-Locked Frequency Multiplier with Novel Pulse Generation Technique in 65nm CMOS
- An Inductorless Phase-Locked Loop with Pulse Injection Locking Technique in 90nm CMOS
- Fractionally Injection-Locked Frequency Multiplication Technique with Multi-Phase Ring Voltage-Controlled Oscillator
- C-12-11 Indutors and Transformers on 65 nm CMOS Technology for 60 GHz Applications
- Fractionally Injection-Locked Frequency Multiplication Technique with Multi-Phase Ring Voltage-Controlled Oscillator (Special Issue : Solid State Devices and Materials)
- C-12-23 A1.8 GHz, 2.2 Watt Fully Integrated CMOS Power Amplifier
- A Ring-VCO-Based Injection-Locked Frequency Multiplier with Novel Pulse Generation Technique in 65nm CMOS