Integration of Tunnel-Coupled Double Nanocrystalline Silicon Quantum Dots with a Multiple-Gate Single-Electron Transistor
スポンサーリンク
概要
- 論文の詳細を見る
We report on integration of double nanocrystalline silicon quantum dots (nc-Si QDs) of approximately 10 nm in diameter onto the multiple-gate single-electron transistor (SET) used as a highly-sensitive charge polarization detector. The SET with a single charging island is first patterned lithographically on silicon-on-insulator, and the multiple-gate bias dependence of the Coulomb current oscillation is characterized at 4.2 K. The coupling capacitance parameters between the SET charging island and the multiple-gate are estimated and compared with those obtained by using the three-dimensional capacitance simulation. Double nc-Si QDs are then deposited in the immediate vicinity of the charging island of the SET by using the very-high frequency plasma deposition technique. We perform the single-electron circuit simulations and demonstrate that only $\pm e$ charge polarization of the double QDs can be sensed as a shift of the Coulomb oscillation peaks.
- 2007-07-15
著者
-
USAMI Kouichi
Quantum Nanoelectronics Research Center, Tokyo Institute of Technology
-
TSUCHIYA Yoshishige
Quantum Nanoelectronics Research Center, Tokyo Institute of Technology
-
Kawata Yoshiyuki
Quantum Nanoelectronics Research Center Tokyo Institute Of Technology
-
Oda Shunri
Quantum Nanoelectronics Research Center And Department Of Physical Electronics Tokyo Institute Of Technology
-
Mizuta Hiroshi
Quantum Nanoelectronics Research Center and Department of Physical Electronics, Tokyo Institute of Technology, and SORST, Japan Science and Technology Agency, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
-
Khalafalla Mohammed
Quantum Nanoelectronics Research Center and Department of Physical Electronics, Tokyo Institute of Technology, and SORST, Japan Science and Technology Agency, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
-
Tsuchiya Yoshishige
Quantum Nanoelectronics Research Center and Department of Physical Electronics, Tokyo Institute of Technology, and SORST, Japan Science and Technology Agency, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
-
Kawata Yoshiyuki
Quantum Nanoelectronics Research Center and Department of Physical Electronics, Tokyo Institute of Technology, and SORST, Japan Science and Technology Agency, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
-
Usami Kouichi
Quantum Nanoelectronics Research Center and Department of Physical Electronics, Tokyo Institute of Technology, and SORST, Japan Science and Technology Agency, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
-
Oda Shunri
Quantum Nanoelectronics Research Center and Department of Physical Electronics, Tokyo Institute of Technology, and SORST, Japan Science and Technology Agency, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
-
Oda Shunri
Quantum Nanoelectronics Research Center (QNERC), Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
関連論文
- Control of Inter-Dot Electrostatic Coupling by a Side Gate in a Silicon Double Quantum Dot Operating at 4.5K
- Atomic Force Microscope Current-Imaging Study for Current Density through Nanocrystalline Silicon Dots Embedded in SiO_2
- Position-Controllable Ge Nanowires Growth on Patterned Au Catalyst Substrate
- Observation of Quantum Level Spectrum for Silicon Double Single-Electron Transistors
- Vapor-Liquid-Solid Growth of Small- and Uniform-Diameter Silicon Nanowires at Low Temperature from Si_2H_6
- Study of Single-Charge Polarization on two Charge Qubits Integrated onto a Double Single-Electron Transistor Readout
- Control of electrostatic coupling observed for Si double quantum dot structures
- Study on Device Parameters of Carbon Nanotube Field Electron Transistors to Realize Steep Subthreshold Slope of Less than 60 mV/Decade
- Size Reduction and Phosphorus Doping of Silicon Nanocrystals Prepared by a Very High Frequency Plasma Deposition System
- Simulation Study of Charge Modulation in Coupled Quantum Dots in Silicon
- Experimental Study on Electron Mobility in Accumulation-Mode Silicon-on-Insulator Metal--Oxide--Semiconductor Field-Effect Transistors
- Electromechanical Simulation of Switching Characteristics for Nanoelectromechanical Memory
- Visible Electroluminescence from Spherical-Shaped Silicon Nanocrystals
- Formation Mechanism of 100-nm-Scale Periodic Structures in Silicon Using Magnetic-Field-Assisted Anodization
- Fabrication of Nanosilicon Ink and Two-Dimensional Array of Nanocrystalline Silicon Quantum Dots
- Synthesis of Assembled Nanocrystalline Si Dots Film by the Langmuir–Blodgett Technique
- Integration of Tunnel-Coupled Double Nanocrystalline Silicon Quantum Dots with a Multiple-Gate Single-Electron Transistor
- Size-Dependent Structural Characterization of Silicon Nanowires
- Control of Electrostatic Coupling Observed for Silicon Double Quantum Dot Structures
- Theoretical Study of Nonequilibrium Electron Transport and Charge Distribution in a Three-Site Quantum Wire
- A Multi-Purpose Electrostatically Defined Silicon Quantum Dot Structure (Special Issue : Solid State Devices and Materials (1))
- Conduction Bottleneck in Silicon Nanochain Single Electron Transistors Operating at Room Temperature
- Temperature Evolution of Spin-Polarized Electron Tunneling in Silicon Nanowire-Permalloy Lateral Spin Valve System
- Growth of Narrow and Straight Germanium Nanowires by Vapor--Liquid--Solid Chemical Vapor Deposition
- Self-Heating Effects and Analog Performance Optimization of Fin-Type Field-Effect Transistors
- Dual Function of Single Electron Transistor Coupled with Double Quantum Dot: Gating and Charge Sensing
- Channel Length Scaling and Surface Nitridation of Silicon Nanocrystals for High-Performance Electron Devices
- Impact of Deformation Potential Increase at Si/SiO
- Dual Function of Single Electron Transistor Coupled with Double Quantum Dot : Gating and Charge Sensing (Special Issue : Solid State Devices and Materials)
- Atomic Force Microscope Current-Imaging Study for Current Density through Nanocrystalline Silicon Dots Embedded in SiO2
- Experimental Study of Two-Terminal Resistive Random Access Memory Realized in Mono- and Multilayer Exfoliated Graphene Nanoribbons (Special Issue : Solid State Devices and Materials)
- Channel Length Scaling and Surface Nitridation of Silicon Nanocrystals for High-Performance Electron Devices (Special Issue : Solid State Devices and Materials)