A Multilayer-Coated Reflection Mirror for Microfabrication
スポンサーリンク
概要
- 論文の詳細を見る
We propose a multilayer-coated mirror for the first mirror of a beamline. Calculated reflectivities of over 80% for B4C/W and C/Ni constant d-spacing multilayer-coated mirrors are obtained at 6 keV. Moreover, by using the constant d-spacing multilayer-coated mirror, a monochromatic light source with high reflectivity and high resolution is obtained at the glancing angle of 1.5°. Furthermore, it is determined that a graded d-spacing multilayer-coated mirror, i.e., a supermirror, is effective in this photon energy region since the half-width at half-maximum of the reflectivity increases. A multilayer-coated reflection mirror for beamline optics is promising for applications in microfabrication and structure analysis of materials.
- 1998-05-15
著者
-
Kinoshita Hiroo
Laboratory Of Advanced Science And Technology For Industry Himeji Institute Of Technology
-
Watanabe Takeo
Laboratory Of Advanced Science And Technology For Industry University Of Hyogo
-
Wood James.
Osmic Inc., 1788 Northwood Drive, Troy, MI 48084, USA
-
Kinoshita Hiroo
Laboratory of Advanced Science and Technology for Industry, Himeji Institute of Technology, 2167 Shosha, Himeji, Hyogo 671-2201, Japan
-
Kimpara Yachiyo
Avance Inc., 3-1-7-205 Meguro, Meguro-ku, Tokyo 153-0063, Japan
-
Platonov Yuriy
Osmic Inc., 1788 Northwood Drive, Troy, MI 48084, USA
-
Watanabe Takeo
Laboratory of Advanced Science and Technology for Industry, Himeji Institute of Technology, 2167 Shosha, Himeji, Hyogo 671-2201, Japan
関連論文
- Ring-Field Extreme Ultraviolet Exposure System Using Aspherical Mirrors
- Novel Evaluation System for Extreme Ultraviolet Lithography Resist in NewSUBARU
- Human Skeletal Muscle Contractile Properties Assessed by Mechanomyogram during Experimentally-induced Hypothermia and Muscle Fatigue
- Contrast Measurement of Reflection Masks Fabricated from Cr and Ta Absorbers for Extreme Ultraviolet Lithography
- Fine Pattern Replication Using ETS-1 Three-Aspherical Mirror Imaging System
- Fabrication of Aspherical Mirrors for Extreme Ultra-Violet Lithography (EUVL) Using Deposition Techniques
- A Novel Design of Three-Aspherical-Mirror Imaging Optics for Extreme Ultra-Violet Lithography
- Soft X-ray Conversion Efficiencies in Laser-Produced Xenon and Tin Plasmas in a 5--17 nm Wavelength Range
- Study on Critical Dimension of Printable Phase Defects Using an Extreme Ultraviolet Microscope: II. Definition of Printable Threshold Region for Hole-Pit Programmed Defects
- Control of Roughness in Mo/Al Multilayer Film Fabricated by DC Magnetron Sputtering
- A Novel Design of Three-Aspherical-Mirror Imaging Optics for Extreme Ultra-Violet Lithography
- Photonuclear Reaction of Iodine-129 with Laser-Compton Scattering Gamma-Rays Using Nd:YVO_4 Laser and Electron Storage Ring
- Evaluating the Optical Index of Ta and Ta-Based Absorbers for an Extreme Ultraviolet Mask Using Extreme Ultraviolet Reflectometry
- Outgassing Characteristics of Low-Molecular-Weight Resists for Extreme Ultraviolet Lithography
- A Multilayer-Coated Reflection Mirror for Microfabrication
- Optimization of Photoacid Generator in Photoacid Generation-Bonded Resist
- In-situ Contamination Thickness Measurement by Novel Resist Evaluation System at NewSUBARU
- Dual Grating Interferometric Lithography for 22-nm Node
- Development of Low Line Edge Roughness and Highly Sensitive Resist for Extreme Ultraviolet Lithography
- Transmission Grating Fabrication for Replicating Resist Patterns of 20 nm and Below
- Direct Evaluation of Surface Roughness of Substrate and Interfacial Roughness in Molybdenum/Silicon Multilayers Using Extreme Ultraviolet Reflectometer
- Study of Critical Dimensions of Printable Phase Defects Using an Extreme Ultraviolet Microscope
- Phase Defect Observation Using Extreme Ultraviolet Microscope
- Resolution Enhancement of Extreme Ultraviolet Microscope Using an Extreme Ultraviolet Beam Splitter
- Actinic Mask Inspection Using an EUV Microscope —Preparation of a Mirau Interferometer for Phase-Defect Detection—
- Extreme Ultraviolet Resist Development at the University of Hyogo
- Experimental Results Obtained using Extreme Ultraviolet Laboratory Tool at New SUBARU
- Cleaning Characteristics of Contaminated Imaging Optics Using 172 nm Radiation
- Development of Fast-Photospeed Chemically Amplified Resist in Extreme Ultraviolet Lithography
- Reducing off Hydrocarbon Contaminants for EUVL
- Resist Outgassing Characteristics in Extreme Ultraviolet Lithography
- At-Wavelength Extreme Ultraviolet Lithography Mask Observation Using a High-Magnification Objective with Three Multilayer Mirrors
- Development of Nanometer Resolution Focus Detector in Vacuum for Extreme Ultraviolet Microscope