Characterization of the Prr1 Response Regulator with Special Reference to Sexual Development in Schizosaccharomyces pombe(Biochemistry & Molecular Biology)
スポンサーリンク
概要
- 論文の詳細を見る
The histidine (His) -to-Aspartate (Asp) phosphorelay is a paradigm of intracellular signaling systems through protein phosphorylation in both prokaryotes and eukaryotes. The fission yeast Schizosaccharomyces pombe has three histidine kinases (Phk1/Mak2, Phk2/Mak3, and Phk3/Mak1), together with two response regulators (Mcs4 and Prr1). The results of recent extensive studies suggested that these His-to-Asp phosphorelay components are involved in oxidative stress responses through the transcriptional regulation of several scavenger genes for toxic free radicals. It was also suggested that they were somehow implicated in control of both the mitotic and meiotic cell proliferations. Among these S. pombe His-to-Asp phosphorelay components, however, the function of Prr1 is less clear. We here characterized a mutant, named prr1-D418N, specifying an altered Prr1 protein that presumably acts as a gain-of-function (or constitutive-active) mutant, with special reference to sexual development. The mutant cells showed a striking phenotype in that they underwent mating even in a nitrogen-sufficient medium, under which conditions the wild-type cells hardly did so. Furthermore, the mutant cells underwent mating very rapidly in a nitrogendeficient medium. Under anaerobic (or micro-aerobic) growth conditions, the wild-type cells were not capable of undergoing sexual development even in a nitrogendeficient medium. The prr1-D418N cells underwent mating efficiently under such anaerobic growth conditions. Taken these together, it was suggested that the function of Prr1 is closely linked to the well-characterized signaling pathways for induction of the sexual development, in a way that this response regulator regulates a critical step of the initiation of meiosis through activating the transcription of ste11^+, mam2^+, and mei2^+, in S. pombe.
- 社団法人日本農芸化学会の論文
- 2003-03-23
著者
-
Ohmiya Ryusuke
Laboratory Of Molecular Microbiology School Of Agriculture Nagoya University
-
Yamada Hideyuki
SEIREN CO. LTD.
-
MIZUNO Takeshi
Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University
-
NAKAMICHI Norihito
Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University
-
Nakamichi Norihito
Riken Yokohama Jpn
-
Nakamichi Norihito
Laboratory Of Molecular Microbiology School Of Agriculture Nagoya University
-
AIBA Hirofumi
Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University
-
Mizuno Takeshi
Laboratory Of Molecular Microbiology School Of Agriculture Nagoya University
-
Aiba H
Nagoya Univ. Nagoya Jpn
-
Aiba Hirofumi
Laboratory Of Molecular Microbiology School Of Agriculture Nagoya University
-
Aiba Hirofumi
名古屋大学 農学部微生物学
-
Aiba Hirofumi
Laboratory Of Microbiology Faculty Of Agriculture Nagoya University
-
YANADA Hisami
Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University
-
AOYAMA Keisuke
Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University
-
Ohmiya R
Laboratory Of Molecular Microbiology School Of Agriculture Nagoya University
-
Yamada Hidenori
Department Of Bioengineering Science Faculty Of Engineering Okayama University
-
Aiba H
Laboratory Of Molecular Microbiology School Of Agriculture Nagoya University
-
Yamada H
Institute For Bee Products And Health Science Yamada Apiculture Center Inc.
-
Aoyama K
Laboratory Of Molecular Microbiology School Of Agriculture Nagoya University
-
Yamada Hisami
Laboratory Of Molecular Microbiology School Of Agriculture Nagoya University
-
Mizuno Takeshi
Laboratory Of Microbiology School Of Agriculture Nagoya University
-
Aiba Hirofumi
Laboratory Of Molecular Microbiology Graduate School Of Bioagricultural Sciences Nagoya University
-
Yamada Hideo
Institute For Bee Products And Health Science Yamada Apiculture Center Inc.
-
NAKAMICHI Norihito
Laboratory of Molecular and Functional Cenomics, School of Agriculture, Nagoya University
関連論文
- A genetic study of the arabidopsis circadian clock with reference to the Timing of Cab Expression 1 (TOC1) gene
- AN-P33 Development of mammalian factors-free medium for cell culture by using silk protein sericin(Section I Animal and Plant Cell Cultures)
- The Common Function of a Novel Subfamily of B-Box Zinc Finger Proteins with Reference to Circadian-Associated Events in Arabidopsis thaliana
- Mutants of Circadian-Associated PRR Genes Display a Novel and Visible Phenotype as to Light Responses during De-Etiolation of Arabidopsis thaliana Seedlings
- A Link between Cytokinin and ASL9 (ASYMMETRIC LEAVES 2 LIKE 9) That Belongs to the AS2/LOB (LATERAL ORGAN BOUNDARIES) Family Genes in Arabidopsis thaliana
- Characterization of a Unique GATA Family Gene That Responds to Both Light and Cytokinin in Arabidopsis thaliana
- AHK5 Histidine Kinase Regulates Root Elongation Through an ETR1-Dependent Abscisic Acid and Ethylene Signaling Pathway in Arabidopsis thaliana
- Combinatorial Microarray Analysis Revealing Arabidopsis Genes Implicated in Cytokinin Responses through the His→Asp Phosphorelay Circuitry
- Rapid Response of Arabidopsis T87 Cultured Cells to Cytokinin through His-to-Asp Phosphorelay Signal Transduction
- Arabidopsis Response Regulator, ARR22, Ectopic Expression of Which Results in Phenotypes Similar to the wol Cytokinin-Receptor Mutant
- Characterization of Plant Circadian Rhythms by Employing Arabidopsis Cultured Cells with Bioluminescence Reporters
- Comparative Studies on the Type-B Response Regulators Revealing their Distinctive Properties in the His-to-Asp Phosphorelay Signal Transduction of Arabidopsis thaliana
- Characterization of the APRR9 Pseudo-Response Regulator Belonging to the APRR1/TOC1 Quintet in Arabidopsis thaliana
- Characterization of the Rice Circadian Clock-Associated Pseudo-Response Regulators in Arabidopsis thaliana
- Characterization of a Set of Phytochrome-Interacting Factor-Like bHLH Proteins in Oryza sativa
- Comparative Overviews of Clock-Associated Genes of Arabidopsis thaliana and Oryza sativa
- Type-B ARR Transcription Factors, ARR10 and ARR12, are Implicated in Cytokinin-Mediated Regulation of Protoxylem Differentiation in Roots of Arabidopsis thaliana
- PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, Together Play Essential Roles Close to the Circadian Clock of Arabidopsis thaliana
- The Arabidopsis Pseudo-response Regulators, PRR5 and PRR7, Coordinately Play Essential Roles for Circadian Clock Function
- PRR5 (PSEUDO-RESPONSE REGULATOR 5) Plays Antagonistic Roles to CCA1 (CIRCADIAN CLOCK-ASSOCIATED 1) in Arabidopsis thaliana
- Circadian-Associated Rice Pseudo Response Regulators (OsPRRs) : Insight into the Control of Flowering Time
- Molecular Dissection of the Promoter of the Light-Induced and Circadian-Controlled APRR9 Gene Encoding a Clock-Associated Component of Arabidopsis thaliana
- Molecular Basis for Promoter Selectivity of the Transcriptional Activator OmpR of Escherichia coli : Isolation of Mutants That Can Activate the Non-Cognate kdpABC Promoter
- Circadian-Controlled Basic/Helix-Loop-Helix Factor, PIL6, Implicated in Light-Signal Transduction in Arabidopsis thaliana
- Characterization of Circadian-Associated APRR3 Pseudo-Response Regulator Belonging to the APRR1/TOC1 Quintet in Arabidopsis thaliana
- Comparative Studies of the AHP Histidine-containing Phosphotransmitters Implicated in His-to-Asp Phosphorelay in Arabidopsis thaliana
- Characterization of bZip-Type Transcription Factor AtfA with Reference to Stress Responses of Conidia of Aspergillus nidulans
- The SskA and SrrA Response Regulators Are Implicated in Oxidative Stress Responses of Hyphae and Asexual Spores in the Phosphorelay Signaling Network of Aspergillus nidulans
- Characterization of the bZip-Type Transcription Factor NapA with Reference to Oxidative Stress Response in Aspergillus nidulans
- Novel Reporter Gene Expression Systems for Monitoring Activation of the Aspergillus nidulans HOG Pathway
- The Evolutionarily Conserved OsPRR Quintet : Rice Pseudo-Response Regulators Implicated in Circadian Rhythm
- Comparative Genetic Studies on the APRR5 and APRR7 Genes Belonging to the APRR1/TOC1 Quintet Implicated in Circadian Rhythm, Control of Flowering Time, and Early Photomorphogenesis
- The Type-A Response Regulator, ARR15, Acts as a Negative Regulator in the Cytokinin-Mediated Signal Transduction in Arabidopsis thaliana
- A Link between Circadian-Controlled bHLH Factors and the APRR1/TOC1 Quintet in Arabidopsis thaliana
- Pseudo-Response Regulators (PRRs) or True Oscillator Components (TOCs)
- Effect of the arcA Mutation on the Expression of Flagella Genes in Escherichia coli
- Importance of Stereospecific Positioning of the Upstream cis-Acting DNA Element Containing a Curved DNA Structure for the Functioning of the Escherichia coli pro V Promoter
- Beneficial Effect of Honeybee-collected Pollen Lump Extract on Benign Prostatic Hyperplasia (BPH) : A Double-blind, Placebo-controlled Clinical Trial
- Tumor Antigen Occurs in N-Glycan of Royal Jelly Glycoproteins : Honeybee Cells Synthesize T-Antigen Unit in N-Glycan Moiety
- A Cyanobacterial Gene That Interferes with the Phosphotransfer Signal Transduction Involved in the Osmoregulatory Expression of ompC and ompF in Escherichia coli
- A Cyanobacterial Gene Encoding a Protein with Extensive Homology to Mammalian Phosphoribosylpyrophosphate Synthetase
- A Controllable Expression-secretion Vector Constructed from the Multiple trp Promoter-operator, the Signal Peptide Region of the ompF Gene and the trpR Gene in Escherichia coli(Microbiology & Fermentation Industry)
- Characterization of the Prr1 Response Regulator with Special Reference to Sexual Development in Schizosaccharomyces pombe(Biochemistry & Molecular Biology)
- His-to-Asp Phosphorelay Circuitry for Regulation of Sexual Development in Schizosaccharomyces pombe(Biochemistry & Molecular Biology)
- Genetic Analysis of the His-to-Asp Phosphorelay Implicated in Mitotic Cell Cycle Control : Involvement of Histidine-Kinase Genes of Schizosaccharomyces pombe(Microbiology & Fermentation Technology)
- The Arabidopsis Sensor His-kinase, AHK4, Can Respond to Cytokinins
- Identification and Characterization of a Novel Gene, hos2^+, the Function of Which Is Necessary for Growth under High Osmotic Stress in Fission Yeast
- Identification and Characterization of a Novel Gene, hos3^+, the Function of Which Is Necessary for Growth under High Osmotic Stress in Fission Yeast
- A Fission Yeast Gene (prr1^+ ) That Encodes a Response Regulator Implicated in Oxidative Stress Response
- Clarification of the Promoter Structure of the Osmoregulated gpd1^+ Gene Encoding an Isozyme of NADH-dependent Glycerol-3-phosphate Dehydrogenase in Fission Yeast
- Construction and Characterization of a Deletion Mutant of gpd2 That Encodes an Isozyme of NADH-Dependent Glycerol-3-phosphate Dehydrogenase in Fission Yeast
- Identification and Classification of Two-component Systems That Affect rpoS Expression in Escherichia coli(Biochemistry & Molecular Biology)
- A Novel Gene That Interferes with the Phosphotransfer Signal Transduction Mediated by the EnvZ Osmosensor in Escherichia coli
- An Arabidopsis Histidine-Containing Phosphotransfer (HPt) Factor Implicated in Phosphorelay Signal Transduction : Overexpression of AHP2 in Plants Results in Hypersensitiveness to Cytokinin
- The APRR1/TOC1 Quintet Implicated in Circadian Rhythms of Arabidopsis thaliana : I. Characterization with APRR1-Overexpressing Plants
- Light Response of the Circadian Waves of the APRR1/TOC1 Quintet : When Does the Quintet Start Singing Rhythmically in Arabidopsis?
- Circadian Waves of Expression of the APRR1/TOC1 Family of Pseudo-Response Regulators in Arabidopsis thaliana:Insight into the Plant Circadian Clock
- Cell Autonomous Circadian Waves of the APRR1/TOC1 Quintet in an Established Cell Line of Arabidopsis thaliana
- Compilation and Characterization of Histidine-Containing Phosphotransmitters Implicated in His-to-Asp Phosphorelay in Plants : AHP Signal Transducers of Arabidopsis thaliana
- Genes Encoding Pseudo-Response Regulators : Insight into His-to Asp Phosphorelay and Circadian Rhythm in Arabidopsis thaliana
- Histidine-Containing Phosphotransfer(HPt) Signal Transducers Implicated in His-to-Asp Phosphorelay in Arabidopsis
- The Arabidopsis AHK4 Histidine Kinase is a Cytokinin-Binding Receptor that Transduces Cytokinin Signals Across the Membrane
- Characterization of Genetic Links between Two Clock-Associated Genes, GI and PRR5 in the Current Clock Model of Arabidopsis thaliana
- The Function of the Clock-Associated Transcriptional Regulator CCA1 (CIRCADIAN CLOCK-ASSOCIATED 1) in Arabidopsis thaliana
- Characterization of Circadian-Associated Pseudo-Response Regulators: I. Comparative Studies on a Series of Transgenic Lines Misexpressing Five Distinctive PRR Genes in Arabidopsis thaliana
- Expression of the Cytokinin-Induced Type-A Response Regulator Gene ARR9 Is Regulated by the Circadian Clock in Arabidopsis thaliana
- A Genome-Wide View of the Escherichia coli BasS-BasR Two-component System Implicated in Iron-responses
- Compilation and Characterization of aNovel WNK Family of Protein Kinases in Arabiodpsis thaliana with Reference to Circadian Rhythms(Biochemistry & Molecular Biology)
- 350-kDa Royal Jelly Glycoprotein (Apisin), Which Stimulates Proliferation of Human Monocytes, Bears the β1-3Galactosylated N-Glycan : Analysis of the N-Glycosylation Site(Biochemistry & Molecular Biology)
- First Evidence for Occurrence of Galβ1-3GlcNAcβ1-4Man Unit in N-Glycans of Insect Glycoprotein : β1-3Gal and β1-4GlcNAc Transferases Are Involved in N-Glycan Processing of Royal Jelly Glycoproteins(Biochemistry & Molecular Biology)
- Occurrence of GalNAcβ1-4GlcNAc Unit in N-Glycan of Royal Jelly Glycoprotein(Biochemistry & Molecular Biology)
- The Structure and Function of the Histidine-Containing Phosphotransfer(HPt) Signaling Domain of Escherichia coli ArcB Sensor
- Characterization of Three Putative Sub-Domains in the Signal-Input Domain of the ArcB Hybrid Sensor in Escherichia coli
- Repression of the Gene Encoding Succinate Dehydrogenase in Response to Glucose Is Mediated by the EIICB^ Protein in Escherichia coli
- Aberrant Expression of the Arabidopsis Circadian-Regulated APRR5 Gene Belonging to the APRR1/TOC1 Quintet Results in Early Flowering and Hypersensitiveness to Light in Early Photomorphogenesis
- Characterization of Circadian-Associated Pseudo-Response Regulators: II. The Function of PRR5 and Its Molecular Dissection in Arabidopsis thaliana
- Roles of Arabidopsis PSEUDO-RESPONSE REGULATOR (PRR) genes in the opposite controls of flowering time and organ elongation under long-day and continuous light conditions
- Identification of Amino Acid Substitutions that Render the Arabidopsis Cytokinin Receptor Histidine Kinase AHK4 Constitutively Active
- Rhythmic and Light-Inducible Appearance of Clock-Associated Pseudo-Response Regulator Protein PRR9 Through Programmed Degradation in the Dark in Arabidopsis thaliana
- Genetic Linkages Between Circadian Clock-Associated Components and Phytochrome-Dependent Red Light Signal Transduction in Arabidopsis thaliana
- Genetic Linkages of the Circadian Clock-Associated Genes, TOC1, CCA1 and LHY, in the Photoperiodic Control of Flowering Time in Arabidopsis thaliana
- Arabidopsis Clock-Associated Pseudo-Response Regulators, PRR9, PRR7 and PRR5 Coordinately and Positively Regulate Flowering Time Through the Canonical CONSTANS-Dependent Photoperiodic Pathway
- The APRR3 Component of the Clock-Associated APRR1/TOC1 Quintet is Phosphorylated by a Novel Protein Kinase Belonging to the WNK Family, the Gene for which is also Transcribed Rhythmically in Arabidopsis thaliana
- Enzymatic Synthesis of Galactosylkojic Acid with Immobilized β-Galactosidase from Bacillus circulans
- Silk Protein, Sericin, Inhibits Lipid Peroxidation and Tyrosinase Activity
- Flavonoid glycosides and limonoids from Citrus molasses
- The APRR1/TOC1 Quintet Implicated in Circadian Rhythms of Arabidopsis thaliana : II. Characterization with CCA1-Overexpressing Plants
- Characterization of the RcsC→YojN→RcsB Phosphorelay Signaling Pathway Involved in Capsular Synthesis in Escherichia coli(Biochemistry & Molecular Biology)
- Deletion of the yhhP Gene Results in Filamentous Cell Morphology in Escherichia coil
- Genomewide Characterization of the Light-Responsive and Clock-Controlled Output Pathways in Lotus japonicus with Special Emphasis of its Uniqueness
- PHYTOCHROME-INTERACTING FACTORS PIF4 and PIF5 Are Implicated in the Regulation of Hypocotyl Elongation in Response to Blue Light in Arabidopsis thaliana
- The Circadian Clock Regulates the Photoperiodic Response of Hypocotyl Elongation through a Coincidence Mechanism in Arabidopsis thaliana
- Transcript Profiling of an Arabidopsis PSEUDO RESPONSE REGULATOR Arrhythmic Triple Mutant Reveals a Role for the Circadian Clock in Cold Stress Response
- A Genetic Study of the Arabidopsis Circadian Clock with Reference to the TIMING OF CAB EXPRESSION 1 (TOC1) Gene
- Involvement of Arabidopsis Clock-Associated Pseudo-Response Regulators in Diurnal Oscillations of Gene Expression in the Presence of Environmental Time Cues
- Insight into Missing Genetic Links Between Two Evening-Expressed Pseudo-Response Regulator Genes TOC1 and PRR5 in the Circadian Clock-Controlled Circuitry in Arabidopsis thaliana
- Effect of Hydrostatic Pressure on the Synthesis of Outer Membrane Proteins in Escherichia coli
- Sequence-directed DNA Curvature in Activator-binding Sequence in the Escherichia coli kdpABC Promoter
- A Rapid Method for Disrupting Genes in the Escherichia coli Genome
- Evidence for new beta 1-3 galactosyltransferase activity involved in biosynthesis of unusual N-glycan harboring T-antigen in Apis mellifera