Reaction Mechanism of Extreme Ultraviolet Resists
スポンサーリンク
概要
- 論文の詳細を見る
Molecular resist of polyphenol was evaluated as an extreme-ultraviolet resist compared with a polymer resist of poly(tert-butoxycarbonylhydroxystyrene). X-ray reflectometry was used to determine the resist-film density and measurement accuracy was improved. The molecular resist shows higher sensitivity of 3 mJ/cm2 than the polymer resist of 4 mJ/cm2. The deprotection mechanism was approximated by simple reaction equations and Fourier-transform infrared spectra was interpreted to give the products of a quantum yield and a deprotection rate constant as $9.7\times 10^{-8}$ and $8.1\times 10^{-8}$ cm3 molecule-1 s-1 for molecular and polymer resists. The higher sensitivity of the molecular resist is due to the larger efficiency of the reaction mechanism.
- 2008-06-25
著者
-
Toriumi Minoru
Semiconductor Leading Edge Technologies Inc.(selete)
-
Itani Toshiro
Semiconductor Leading Edge Technol. Ibaraki Jpn
-
Itani Toshiro
Semiconductor Leading Edge Technologies, Inc., 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
-
Kaneyama Koji
Semiconductor Leading Edge Technologies, Inc., 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
関連論文
- Dependence of Outgassing Characters at a 157 nm Exposure on Resist Structures
- The Emergence of Alternative Developers for Extreme Ultraviolet Lithography
- Difference in Reaction Schemes in Photolysis of Triphenylsulfonium Salts between 248nm and Dry/Wet 193nm Resists
- 157-nm Single-Layer Resists Based on Main-Chain-Fluorinated Polymers
- Progress in Top Surface Imaging Process
- Relationship between Chemical Gradient and Line Edge Roughness of Chemically Amplified Extreme Ultraviolet Resist
- Assessment and extendibility of chemically amplified resists for extreme ultraviolet lithography: consideration of nanolithography beyond 22nm half-pitch
- Reconstruction of Latent Images from Dose-Pitch Matrices of Line Width and Edge Roughness of Chemically Amplified Resist for Extreme Ultraviolet Lithography
- Fabrication of 65-nm Holes for 157-nm Lithography
- Resist Parameter Extraction from Line-and-Space Patterns of Chemically Amplified Resist for Extreme Ultraviolet Lithography
- Development of 157 nm Resist Using Highly Exact Theoretical Calculation of Absorption Spectra
- Multicomponent negative-type photoresist based on Noria analog with 12 ethoxy groups
- A Nonaqueous Potentiometric Titration Study of the Dissociation of t - Butyl Methacrylate - Methacrylic Acid Copolymers
- 157-nm Resist Material Design for Improvement of Its Transparency Using Highly Precise Theoretical Calculation
- Evaluation of High-Transmittance Attenuated Phase Shifting Mask for 157 nm Lithography
- In situ Characterization of Photoresist Dissolution
- Quencher Effects at 22 nm Pattern Formation in Chemically Amplified Resists
- Effects of Rate Constant for Deprotection on Latent Image Formation in Chemically Amplified Extreme Ultraviolet Resists
- Feasibility Study of Chemically Amplified Extreme Ultraviolet Resists for 22 nm Fabrication
- Evaluation of Chemical Gradient Enhancement Methods for Chemically Amplified Extreme Ultraviolet Resists
- Reaction Mechanism of Extreme Ultraviolet Resists
- Analysis of Dose-Pitch Matrices of Line Width and Edge Roughness of Chemically Amplified Fullerene Resist
- In-situ Contamination Thickness Measurement by Novel Resist Evaluation System at NewSUBARU
- Extreme Ultraviolet Resist Fabricated Using Water Wheel-Like Cyclic Oligomer with Pendant Adamantyl Ester Groups
- Vacuum Ultraviolet (VUV)-Light-Induced Outgassing from Resist Polymers: A Study Using In Situ Quartz Crystal Microbalance (QCM) Technique
- A Study of Molecular Orientation Effect in Photoresist Films
- Latent Image Created Using Small-Field Exposure Tool for Extreme Ultraviolet Lithography
- Diffusion Control Using Matrix Change during Chemical Reaction for Inducing Anisotropic Diffusion in Chemically Amplified Resists