Fabrication of Thin-Film Polycrystalline Silicon Solar Cells by Silane-Gas-Free Process Using Aluminum-Induced Crystallization
スポンサーリンク
概要
- 論文の詳細を見る
The authors have proposed a silane-gas-free fabrication process for thin-film polycrystalline Si solar cells. The process includes formation of a polycrystalline Si seed layer by aluminum-induced crystallization (AIC), crystallization of a Si film formed by physical vapor deposition (PVD) techniques for a base layer, aluminum diffusion from the AIC-grown Si (AIC-Si) layer to the base layer and pn-junction formation by the spin-on-glass technique. The crystal grains grew to a size of ${\sim}20$ μm in diameter through crystallization of the electron-beam-evaporated Si film on the AIC-Si layer, and the carrier lifetime was about 0.6 μs. In the solar cell fabricated by this process, the AIC-Si layer acts as a back-surface-field (BSF) layer, and the energy band is also inclined in its base layer so that the minority carriers can be pushed back to the depletion layer. These features indicate the possibility of fabricating low-cost and high-efficiency thin-film polycrystalline Si solar cells. The issues that must be pursued to realize high efficiency are reduction of oxygen atom inclusions during Si film deposition, passivation of the grain boundaries and development of a deposition technique for Si films having intermediate packing densities between those of electron-beam-evaporated films and sputter-deposited films, to prevent crack formation when the Si films are crystallized.
- 2003-04-15
著者
-
ITO Tadashi
TOYOTA Central Research & Development Laboratories, Inc.
-
YAMAGUCHI Masafumi
Toyota Technological Institute
-
FUKUSHIMA Hideoki
TOYOTA Central Research and Development Laboratories. Inc.
-
Yamaguchi Masafumi
Toyota Technological Institute, Tempaku-ku, Nagoya 468-8511, Japan
-
Fukushima Hideoki
TOYOTA Central Research and Development Laboratories, Inc., Nagakute-cho, Aichi-gun, Aichi 480-1192, Japan
関連論文
- Internal Stress of CoSi_2 Films Formed by Rapid Thermal Annealing
- Stress Measurements in Silicon Substrates with TiSi_2 Patterns Using Raman Microprobe
- Single-Shot Creation of Nanometer-Sized Silicon Tadpoles by Ultrahigh-Intensity Laser
- Annealing Enhancement Effect by Light Illumination on Proton Irradiated Cu(In,Ga)Se_2 Thin-Film Solar Cells : Nuclear Science, Plasmas, and Electric Discharges
- Radiation Resistant Low Bandgap InGaASP Solar Cell for Multi-Junction Solar Cells : Semiconductors
- Effects of Annealing on Type Converted Si and Space Solar Cells Irradiated with Heavy Fluence 1 MeV Electrons
- Analysis of Radiation Damage to Si Solar Cells under High-Fluence Electron Irradiation
- Characteristics of Alpha-Radiation-Induced Deep Level Defects in p-Type InP Grown by Metal-Organic Chemical Vapor Deposition
- Fabrication of Thin-Film Polycrystalline Silicon Solar Cells by Silane-Gas-Free Process Using Aluminum-Induced Crystallization
- Nitrogen Related Electron Trap with High Capture Cross Section in n-Type GaAsN Grown by Chemical Beam Epitaxy
- In situ Real-Time X-ray Reciprocal Space Mapping during InGaAs/GaAs Growth for Understanding Strain Relaxation Mechanisms
- Investigation of High-Efficiency InGaP/GaAs Tandem Solar Cells under Concentration Operation
- Two-Terminal Monolithic In_Ga_P/GaAs Tandem Solar Cells with a High Conversion Efficiency of Over 30%
- Deep Level Transient Spectroscopy Analysis of 10MeV Proton and 1MeV Electron Irradiation-Induced Defects in p-InGaP and InGaP-based Solar Cells
- Radiation Resistance of InP-Related Materials
- Analysis of Photovoltaic Properties of C_60-Si Heterojunction Solar Cells
- Self-Aligned Formation of Porous Silicon Membranes Using Si Diaphragm Structures : Instrumentation, Measurement, and Fabrication Technology
- Growth Rate and Crystallinity of Nanocrystalline Silicon Film Grown by Electron Beam Excited Plasma Chemical Vapor Deposition
- InP Solar Cells and their Flight Experiments
- Lattice Location of ^N Atoms in SiC Analyzed by Nuclear Resonant Reaction
- Theoretical Optimization of Base Doping Concentration for Radiation Resistance of InGaP Subcells of InGaP/GaAs/Ge Based on Minority-Carrier Lifetime
- Effect of Low Growth Rate in Chemical Beam Epitaxy on Carrier Mobility and Lifetime of p-GaAsN Films
- Numerical Analysis for Radiation Resistant InGaP Solar Cell
- New Surface Treatment of Polymers by Simultaneous Exposure to Vacuum Ultra-Violet Light and Nanometer-Sized Particles
- Analysis of Heteroepitaxial AlGaAs/Si Tandem Solar Cell for Concentrator Applications
- Fabrication of GaAs/GaInNAs Heterojunction Solar Cells Applicable To High-Efficiency Multi-junction Tandem Structures
- Effect of Base Doping Concentration on Radiation-Resistance for GaAs Sub-Cells in InGaP/GaAs/Ge
- Wide-Angle Antireflection Effect of Subwavelength Structures for Solar Cells
- Study on Iron Distribution and Electrical Activities at Grain Boundaries in Polycrystalline Silicon Substrate for Solar Cells
- Fabrication of Thin-Film Polycrystalline Silicon Solar Cells by Silane-Gas-Free Process Using Aluminum-Induced Crystallization
- Structural and Molecular Changes of C Thin Films with Incorporated Magnesium Atoms (Special Issue : Solid State Devices and Materials (2))
- Effect of Thermal Stress on a N-Related Recombination Center in GaAsN Grown by Chemical Beam Epitaxy
- Observation of In-Plane Asymmetric Strain Relaxation during Crystal Growth and Growth Interruption in InGaAs/GaAs(001)
- Origin Investigation of a Nitrogen-Related Recombination Center in GaAsN Grown by Chemical Beam Epitaxy
- Crystal Structures of Copper–Phthalocyanine on C60(111) Surface Grown by Molecular Beam Epitaxy
- Single-Shot Creation of Nanometer-Sized Silicon Tadpoles by Ultrahigh-Intensity Laser
- Effects of Residual Carbon and Hydrogen Atoms on Electrical Property of GaAsN Films Grown by Chemical Beam Epitaxy
- Chemical Beam Epitaxy of GaAsN Thin Films with Monomethylhydrazine as N Source
- Radiation Resistance of Wide Band Gap $n^{+}/ p$ AlInGaP Solar Cell for High-Efficient Multijunction Space Solar Cells
- Carbon Reduction in GaAsN Thin Films by Flow-Rate-Modulated Chemical Beam Epitaxy
- Properties of a Nitrogen-Related Hole Trap Acceptor-Like State in p-Type GaAsN Grown by Chemical Beam Epitaxy
- Surface Treatment of Polymers by Simultaneous Exposure to Vacuum UV and Nanometer-Sized Particles in Helium Atmosphere
- Erratum: ``Effect of Low Growth Rate in Chemical Beam Epitaxy on Carrier Mobility and Lifetime of p-GaAsN Films''
- III--V--N Materials for Super-High Efficiency Multi Junction Solar Cells