Growth Mechanism of GaAs during Migration-Enhanced Epitaxy at Low Growth Temperatures
スポンサーリンク
概要
- 論文の詳細を見る
The growth process of GaAs during migration-enhanced epitaxy at low temperatures is investigated using reflection high-energy electron diffraction. Observation of specular beam intensity during growth reveals that a flat growing surface is maintained at 300°C even when the number of Ga atoms deposited per cycle is not equal to the surface site number. The composition at the growing surface can deviate considerably from stoichiometry at low temperatures because of excess As adsorpt ion. This problem is avoided by optimizing the number of As4 molecules deposited per cycle. The optimum number of As4 molecules was discussed with respect to the number of Ga atoms on the growing surface.
- INSTITUTE OF PURE AND APPLIED PHYSICSの論文
- 1989-02-20
著者
-
Horikoshi Yoshiji
Ntt Electrial Communication Laboratories
-
KAWASHIMA Minoru
NTT Electrial Communication Laboratories
関連論文
- Effect of Growth Interruption during GaAs/AlGaAs Molecular Beam Epitaxy on (411)A Substrates
- Flattening Transition 0n GaAs (411)A Surfaces Observed by Scanning Tunneling Microseopy
- Field Effect of Photoluminescence from Excitons Bound to Nitrogen Atom Pairs in GaAs
- Field Effect Photoluminescence from Excitons Bound to Nitrogen Pairs in GaAs
- High-Mobility Two-Dimensional Electron Gas from Delta-Doped Asymmetric Al_xGa_As/GaAs/Al_yGa_As Quantum Wells
- High-Mobility Inverted Modulation-Doped GaAs/AlGaAs Heterostructures
- In Situ Optical Monitoring of the GaAs Growth Process in MOCVD
- Efficient Si Planar Doping in GaAs by Flow-Rate Modulation Epitaxy
- Determination of the Facet Index in Area Selective Epitaxy of GaAs
- Selective Growth of GaAs on GaAs (111)B Substrates by Migration-Enhanced Epitaxy
- Determination of the Facet Index in Area Selective Epitaxy of GaAs
- Migration-Enhanced Epitaxy of GaAs and AlGaAs
- Low-Temperature Growth of GaAs and AlAs-GaAs Quantum-Well Layers by Modified Molecular Beam Epitaxy
- High Electron Mobility in AlGaAs/GaAs Modulation-Doped Structures
- Fabrication of Quantum Wires by Ga Focused-Ion-Beam Implantation and Their Transport Properties
- Effect of Structure on Transport Characteristics of Ballistic One-Dimensional Channel
- Growth of GaAs/InAs Antidot Structure by Solid-Source MBE
- Growth of GaAs/InAs Anti-Dot Structure by Solid Source MBE
- Misorientation in GaAs on Si Grown by Migration-Enhanced Epitaxy
- In Situ Optical Observation of Surface Kinetics during GaAs Metalorganic Chemical Vapor Deposition
- Decomposition of Arsine and Trimethylarsenic on GaAs Investigated by Surface Photo-Absorption
- Investigation of the Decomposition Process of Ga Organometals in MOCVD by the Surface Photo-Absorption Method
- Annealing Properties of Si-Atomic-Layer-Doped GaAs
- Optimal Growth Conditions of AlGaAs/GaAs Quantum Wells by Flow-Rate Modulation Epitaxy
- Thermal Annealing Effect of AlAs-GaAs Superlattice Grown at 300℃ by Migration-Enhanced Epitaxy : Condensed Matter
- Observation of Transient Behavior of GaAs MBE Growth by RHEED Oscillation
- Molecular Beam Epitaxial Growth of GaAs with Arsenic Molecules Transported by Hydrogen Gas
- Modulation Doped n-AlGaAs/GaAs Heterostructures Grown by Flow-rate Modulation Epitaxy
- Simultaneous Observation of RHEED Oscillation during GaAs MBE Growth with Modulated Electron Beam
- Growth of GaAs on Preferentially Etched GaAs Surfaces by Migration-Enhanced Epitaxy : Condensed Matter
- Luminescence Characteristics from Gaussian Shaped Quantum Wells
- Optical Investigation on the Growth Process of GaAs during Migration-Enhanced Epitaxy
- Growth of ZnSe/GaAs Superlattices by Migration-Enhanced Epitaxy
- Lattice Vibration of Thin-Layered AlAs-GaAs Superlattices
- Surface Migration of Ga and Al Atoms on (100) GaAs and AlAs during Migration-Enhanced Epitaxy
- Growth Mechanism of GaAs during Migration-Enhanced Epitaxy at Low Growth Temperatures