Theoretical Simulation of Atomic Force Microscope Based on Cluster Models
スポンサーリンク
概要
- 論文の詳細を見る
The theoretical simulation of atomic force microscope (AFM) images is performed using a model of a multiple-atom diamond tip scanned on a graphite substrate surface. It is clarified how the AFM images and the force distributions change as the load varies. The effect of the tip apex structure is examined by tilting the tip and by using two different tips. In the cluster models, the interatomic potential within the tip and the surface is assumed to be harmonic, and that between the tip and the surface is taken as Lennard-Jones type. It is clearly shown that AFM images are influenced not only by the geometrical structure of the surface, but also by microscopic elastic properties of the tip and the surface as well as the tip structure.
- 社団法人応用物理学会の論文
- 1995-06-30
著者
-
Tsukada Masaru
Department Of Nano-science And Nano-technology Advanced School Of Science And Engineering Waseda Uni
-
Sasaki Naruo
Department Of Materials And Life Sciences Faculty Of Science And Technology Seikei University
-
Sasaki Naruo
Department Of Physics Graduate School Of Science University Of Tokyo:jrdc Pre-research Program Labor
-
Tsukada Masaru
Department Of Physics Graduate School Of Science University Of Tokyo:jrdc Pre-research Program Labor
-
Sasaki Naruo
Department Of Materials And Life Science Faculty Of Science And Technology Seikei University
-
Tsukada Masaru
Department of Nano-Science and Nano-Engineering, Waseda University, 513 Waseda Tsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
-
Sasaki Naruo
Department of Applied Physics, Faculty of Engineering, Seikei University, Kichijoji Kitamachi 3-3-1, Musashino-shi, Tokyo 180-8633, Japan
関連論文
- Theory of Microscopic Mechanism and Related Exotic Phenomena of Scanning Tunneling Microscopy
- Theory of Scanning Tunneling Microscopy/Spectroscopy for Adsorbed Surfaces and Layer Crystal Surfaces
- SIM-05 MECHANISM OF SUPERLUBRICITY OF FULLERENE BEARINGS(Simulations of Micro/Nano Scale Phenomena II,Technical Program of Oral Presentations)
- Band Structures of Periodic Carbon Nanotube Junctions and Their Symmetries Analyzed by the Effective Mass Approximation
- First Principles Study of the Effect of Tip Shape on Scanning Tunneling Microscopy Images
- Ballistic Transport in Artificial Nano-Circuits
- Numerical Simulation of the Single Electron Tunneling Processes in the Scanning Tunneling Spectroscopy through Metal Fine Particle
- Model Potential for the Dimer System on the Si(001) Surface Improved by a First-Principles Calculation and Structural Fluctuation Studied by a Monte Carlo Simulation(Condensed Matter : Structure, Mechanical and Thermal Properties)
- Model Potential for the Dimer System on the Si(001) Surface Improved by a First-Principles Calculation and Structural Fluctuation Studied by a Monte Carlo Simulation
- Conductance through Atoms: Dot or Channel
- Time-Fluctuation of the Dimer Structure on a Ge(001) Surface Studied by a Monte Carlo Simulation and a First-Principles Calculation
- SIM-13 SIMULATION OF PICO-FORCE DETECTION IN LATERAL-MODE DYNAMIC AFM(Simulations of Micro/Nano Scale Phenomena IV,Technical Program of Oral Presentations)
- Theory of Electronic Processes of Scanning Tunneling Microscopy
- The Acceptor States in Tellurium
- Variational Calculation of Acceptor States in Tellurium
- Theory of Atomic-Force Microscopy(STM Theory)
- Numerical Method for Local Density of States and Current Density Decomposed into Eigenchannels in Multichannel System
- Combined OPW-TB Method for the Band Calculation of Layer-Type Crystals. II. : The Band Structure of Graphite
- Combined OPW-TB Method for the Band Calculation of Layer-Type Crystals. I. : General Formalism and Application to the π Band of Graphite
- Theory of Quantum Conductance of Atomic and Molecular Bridges
- Theoretical Analysis of Tip Effect on Noncontact Atomic Force Microscopy Image of Si(100) 2×1 : H Surface(Surfaces, Interfaces, and Films)
- Large Loop Current Induced Inside the Molecular Bridge
- Theory of Atomic and Electronic Processes Induced by the Tip of SPM
- Finite Element Approach for Simulating Quantum Electron Dynamics in a Magnetic Field : Condensed Matter: Electronic Properties, etc.
- On the Tail States of the Landau Subbands in MOS Structures under Strong Magnetic Field
- Interpretation of Frictiomal-Force Microscopy Images Based on the Two-Dimensional Stick-Slip Motion of the Tip Atom
- Molecular Orbital Theory of Field Evaporation
- Theoretical Simulation of Atomic Force Microscope Based on Cluster Models
- The Relation between Resonance Curves and Tip-Surface Interaction Potential in Noncontact Atomic-Force Microscopy
- Theory of Non-Adiabatic Processes of Adsorbates
- New Method for Noncontact Atomic Force Microscopy Image Simulations
- Microscopic Theory of a Critical Temperature of Superconducting Superlattices
- Large-Scale Electronic-Structure Calculations Based on the Adaptive Finite-Element Method
- On the Electronic Structure of the Polar Surface of Compound Crystals
- Cantilever dynamics beyond the steady state approximation
- Effect of Microscopic Nonconservative Process on Noncontact Atomic Force Microscopy
- A Tight-Binding Study of Chemical Interaction of Nanotube Tip with Si(001) Surface : Condensed Matter: Electronic Properties, etc.
- Simulated Noncontact Atomic Force Microscopy Images of Si(001)Surface with Silicon Tip
- Fourier Expansion Method for Noncontact Atomic Force Microscopy Image Simulations : Application to Si(111)√ × √-Ag Surface
- Dihydrides Accelerate Vibrational Relaxation on Si(001)/H Surfaces
- Nonlinear Effects on Vibrational Energy Transfer on Si(001)/H Surfaces
- Effect of Microscopic Tip Electronic State on STM Image of Graphite
- First-Principles Theory of Electronic States under Strong Field and Current and Its Application to Scanning Tunneling Microscopy
- 23pW-5 Concepts and Applications of Noncontact Dissipation Force Microscopy
- Theoretical Prescriptions for Improving Conductances of Short DNA Segments Sandwiched between Metal Electrodes
- Fast and Stable Method for Simulating Quantum Electron Dynamics
- Structure and Reactivity of Pure and Hydrogenated C_ by the First-Principles Density Functional Calculation
- Key Issues of Nanotribology for Successful Nanofabrication — From Basis to C60 Molecular Bearings
- Theoretical Study of Crystal Structures and Energy Bands of Polyacene and Pentacene Derivatives(Condensed matter: electronic structure and electrical, magnetic, and optical properties)
- Effects of H-H Interactions on Vibrational Spectra of Si(001)/H Surfaces
- Theory of Dissipative Electron Transfer of a Molecule at the Interface
- Atomic-Scale Peeling of Graphene
- Simulation of Noncontact Atomic Force Microscopy of Hydrogen- and Methyl-Terminated Si(001) Surfaces
- Quenching Mechanism of Mechanically Compressed Green Fluorescent Protein Studied by CASSCF/AM1
- Theoretical Study of Silicon Adatom Transfer from the Silicon Surface in Scanning Tunneling Microscopy ( Scanning Tunneling Microscopy)
- Theoretical Study of Current and Barrier Height between Alurninum Tip and Silicon Surface in Scanning Tunneling Microscopy
- Adsorption of Benzene on Si(001) from Noncontact Atomic Force Microscopy Simulation
- Quantum Transport Through Multiterminal Phenalenyl Molecular Bridges
- Simulation of Scan-Directional Dependence of Superlubricity of C60 Molecular Bearings and Graphite
- Analysis of Mechanism of Low Lateral Stiffness of Superlubric C60 Bearing System
- Theoretical Analyses of Cantilever Oscillation for Dynamic Atomic Force Microscopy in Liquids
- First-Principles Calculations of Quantum Transport in Single Molecule
- Theory of Quantum Conductance of Atomic and Molecular Bridges