Theory of Quantum Conductance of Atomic and Molecular Bridges
スポンサーリンク
概要
- 論文の詳細を見る
Recent topics on theoretical analyses and prediction of the nano-scale structures connected between the electrodes are presented with discussions on several fundamental issues of these systems. Theoretical approaches used are the first-principles recursion transfer matrix method implemented with non-local pseudo-potentials, as well as non-equilibrium Green's function technique with tight binding bases. The former method is utilized for the analyses of atom wires and field emission process. As for the atom wire bridges, a very large effect of the terminal impurity and localized bias field distribution is elucidated. On the other hand, the latter method is mainly used for the analyses of the molecular bridges. The significant terminal effect is also found for the molecular bridge systems, if the transport is caused by the resonant tunneling. In addition, the effect of the conformational change inside the molecule is found to be sufficiently large for the STM tunneling current. Next, the remarkable feature of the large loop current inside the molecule is discussed in detail, as well as its relationship with the magnetically induced intramolecular current. Finally, the effect of the electron phonon couplings on the electronic states and the electron transfer processes are discussed in some detail, and the transition from the coherent to the dissipative hopping is considered.
- 一般社団法人日本物理学会の論文
- 2005-04-15
著者
-
HIROSE Kenji
Fundamental and Environmental Research Laboratories, NEC Corporation
-
KOBAYASHI Nobuhiko
Nanotechnology Research Institute (NRI), National Institute of Advanced Industrial Science and Techn
-
Tagami Katsunori
Department Of Molecular Engineering Graduate School Of Bioscience And Biotechnology Tokyo Institute
-
Tsukada Masaru
Department of Nano-Science and Nano-Engineering, Waseda University, 513 Waseda Tsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
関連論文
- Theory of Microscopic Mechanism and Related Exotic Phenomena of Scanning Tunneling Microscopy
- Theory of Scanning Tunneling Microscopy/Spectroscopy for Adsorbed Surfaces and Layer Crystal Surfaces
- Band Structures of Periodic Carbon Nanotube Junctions and Their Symmetries Analyzed by the Effective Mass Approximation
- First Principles Study of the Effect of Tip Shape on Scanning Tunneling Microscopy Images
- Numerical Simulation of the Single Electron Tunneling Processes in the Scanning Tunneling Spectroscopy through Metal Fine Particle
- Model Potential for the Dimer System on the Si(001) Surface Improved by a First-Principles Calculation and Structural Fluctuation Studied by a Monte Carlo Simulation(Condensed Matter : Structure, Mechanical and Thermal Properties)
- Conductance through Atoms: Dot or Channel
- Time-Fluctuation of the Dimer Structure on a Ge(001) Surface Studied by a Monte Carlo Simulation and a First-Principles Calculation
- The Acceptor States in Tellurium
- Variational Calculation of Acceptor States in Tellurium
- Numerical Method for Local Density of States and Current Density Decomposed into Eigenchannels in Multichannel System
- Combined OPW-TB Method for the Band Calculation of Layer-Type Crystals. II. : The Band Structure of Graphite
- Combined OPW-TB Method for the Band Calculation of Layer-Type Crystals. I. : General Formalism and Application to the π Band of Graphite
- Theory of Quantum Conductance of Atomic and Molecular Bridges
- Theoretical Analysis of Tip Effect on Noncontact Atomic Force Microscopy Image of Si(100) 2×1 : H Surface(Surfaces, Interfaces, and Films)
- Large Loop Current Induced Inside the Molecular Bridge
- Theory of Atomic and Electronic Processes Induced by the Tip of SPM
- Finite Element Approach for Simulating Quantum Electron Dynamics in a Magnetic Field : Condensed Matter: Electronic Properties, etc.
- On the Tail States of the Landau Subbands in MOS Structures under Strong Magnetic Field
- Interpretation of Frictiomal-Force Microscopy Images Based on the Two-Dimensional Stick-Slip Motion of the Tip Atom
- Molecular Orbital Theory of Field Evaporation
- Theoretical Simulation of Atomic Force Microscope Based on Cluster Models
- New Method for Noncontact Atomic Force Microscopy Image Simulations
- Microscopic Theory of a Critical Temperature of Superconducting Superlattices
- Large-Scale Electronic-Structure Calculations Based on the Adaptive Finite-Element Method
- Cantilever dynamics beyond the steady state approximation
- Effect of Microscopic Nonconservative Process on Noncontact Atomic Force Microscopy
- A Tight-Binding Study of Chemical Interaction of Nanotube Tip with Si(001) Surface : Condensed Matter: Electronic Properties, etc.
- Simulated Noncontact Atomic Force Microscopy Images of Si(001)Surface with Silicon Tip
- Fourier Expansion Method for Noncontact Atomic Force Microscopy Image Simulations : Application to Si(111)√ × √-Ag Surface
- Dihydrides Accelerate Vibrational Relaxation on Si(001)/H Surfaces
- Nonlinear Effects on Vibrational Energy Transfer on Si(001)/H Surfaces
- Effect of Microscopic Tip Electronic State on STM Image of Graphite
- First-Principles Theory of Electronic States under Strong Field and Current and Its Application to Scanning Tunneling Microscopy
- 23pW-5 Concepts and Applications of Noncontact Dissipation Force Microscopy
- Theoretical Prescriptions for Improving Conductances of Short DNA Segments Sandwiched between Metal Electrodes
- Fast and Stable Method for Simulating Quantum Electron Dynamics
- Theoretical Study of Crystal Structures and Energy Bands of Polyacene and Pentacene Derivatives(Condensed matter: electronic structure and electrical, magnetic, and optical properties)
- Effects of H-H Interactions on Vibrational Spectra of Si(001)/H Surfaces
- Theory of Dissipative Electron Transfer of a Molecule at the Interface
- Simulation of Noncontact Atomic Force Microscopy of Hydrogen- and Methyl-Terminated Si(001) Surfaces
- Quenching Mechanism of Mechanically Compressed Green Fluorescent Protein Studied by CASSCF/AM1
- Theoretical Study of Silicon Adatom Transfer from the Silicon Surface in Scanning Tunneling Microscopy ( Scanning Tunneling Microscopy)
- Theoretical Study of Current and Barrier Height between Alurninum Tip and Silicon Surface in Scanning Tunneling Microscopy
- Adsorption of Benzene on Si(001) from Noncontact Atomic Force Microscopy Simulation
- Quantum Transport Through Multiterminal Phenalenyl Molecular Bridges
- Theoretical Analyses of Cantilever Oscillation for Dynamic Atomic Force Microscopy in Liquids
- First-Principles Calculations of Quantum Transport in Single Molecule
- Theory of Quantum Conductance of Atomic and Molecular Bridges