教員養成大学における大学生の論証力の問題点(2) : 不可能性の説明に対する評価に焦点をあてて
スポンサーリンク
概要
著者
関連論文
-
On fusion systems and isometries of characters (Cohomology Theory of Finite Groups and Related Topics)
-
数学教育における概念変容研究の科学哲学的基礎の再考 : アーネストの社会的構成主義を手がかりに
-
C12 無理数の学習指導における概念変容に関する研究 : 非通約性の認識に焦点を当てて(C.【数と計算・代数】,論文発表の部,第III編 第39回数学教育論文発表会発表論文要約)
-
無理数の学習指導における概念変容に関する研究--非通約性の認識に焦点をあてて
-
2G4-H2 教員養成大学における大学生の論証力の問題点 : 小学校算数科での論証の指導と評価に向けて(教育実践・科学授業開発(6),一般研究発表,次世代の科学力を育てる-社会とのグラウンディングを求めて-)
-
一斉授業におけるパソコンの現実的な利用について(第一報) : 教師の役割,子どもの活動,パソコンの利用をめぐって
-
小学校におけるプログラミング指導について LOGOとBASICを中心として
-
数学教育におけるパソコンの利用とそのプログラミング(II)
-
数学教育におけるパソコン利用とそのプログラミング(I)
-
数学教育におけるコンピュータ・プログラミングの指導について(III) : LOGO言語を中心として
-
数学教育におけるコンピュータ・プログラミングの指導について(II) : LOGOを中心として
-
数学教育と他教科との関連について : 地図と面積計の数学
-
1G2-I5 数学教育における概念変容研究の科学哲学的基礎の再考 : ラカトシュ理論の援用可能性について(科学教育各論,一般研究発表,次世代の科学力を育てる)
-
D5 平方根の授業における概念変容過程の分析(D.【数と計算・代数】,論文発表の部)
-
グラフ理論の教育について : 小学生を対象として
-
グラフ理論の教育について : 中学生を対象として
-
数学教育の進化を考える 3 : 国際交流との関連で
-
数学教育の進化を考える 1 : 国際交流との関連で
-
数学教育の進化を考える 3 : 国際交流との関連で
-
数学教育の進化を考える 1 : 国際交流との関連で
-
数学教育の進化をめざして : 教員養成とかかわって
-
コンピュータ科学の基礎, その教育の研究と実践-X IX : グラフ理論からのアプローチ
-
小学生の構造的な見方について
-
数学教育の進化をめざして : 教員養成とかかわって
-
コンピュータ科学の基礎, その教育の研究と実践-X IX : グラフ理論からのアプローチ
-
小学生の構造的な見方について
-
モデリングの教育について : 高校生を対象として
-
コンピュータ科学の基礎, その教育の研究と実践-XVIII : グラフ理論からのアプローチ
-
モデリングの教育について : 高校生を対象として
-
コンピュータ科学の基礎, その教育の研究と実践-X VIII : グラフ理論からのアプローチ
-
コンピュータ科学の基礎、その教育の研究と実践 XVI : グラフ理論からのアプローチ
-
コンピュータ科学の基礎、その数育の研究と実践 XV : 計算幾何学からのアプローチー
-
数学教育の進化をめざしてIV : 算数数学が好きになるために
-
子どもの構造的なとらえ方について
-
コンピュータ科学の基礎, その教育の研究と実践 XVI : グラフ理論からのアプローチ
-
グラフ電卓を用いた教材開発 : 教職課程の授業をとおして
-
グラフ電卓を用いた教材開発 : 教職課程の授業をとおして
-
数学教育の進化をめざしてIV : 算数数学が好きになるために
-
数学教育におけるファジイモデリングの教育 : 高校生を対象として
-
数学教育におけるファジイモデリングの教育 : 高校生を対象として
-
数学教育の進化をめざして III : 数学教育の国際交流とかかわって
-
コンピュータ科学の基礎、その教育の研究と実践XIII : ファジィ理論について
-
数学教育の進化をめざしてIII : 数学教育の国際交流とかかわって
-
コンピュータ科学の基礎、その教育の研究と実践XIII : ファジィ理論について
-
-perfect isometry (1) (有限群論と代数的組合せ論 RIMS研究集会報告集)
-
算数・数学学習における概念変容に関する基礎的研究 : 「数」領域の展開を中心に(第I編 学位論文紹介)
-
平林一榮先生へのインタビュー(数学教育現代化を振り返る)
-
G8 数学学習における概念変容のメカニズムに関する一考察 : 数学の対話的・弁証法的本性への着眼(G【言語とコミュニケーション】,論文発表の部)
-
コンピュータ科学の基礎, その教育の研究と実践XV : 計算幾何学からのアプローチ
-
数学教育におけるファジイモデリングの教育 : 高校生を対象として
-
数理思想とモデリング : 小学生の卒業研究
-
数理思想とモデリング : 中学生のためのグラフ理論
-
数理思想とモデリング : 小学生の卒業研究
-
数理思想とモデリング : 中学生のためのグラフ理論
-
コンピュータ科学の基礎、その教育の研究と実践 X : 文科系大学生・短大生の授業をとおして
-
コンピュータ科学の基礎、その教育の研究と実践X : 文科系大学生・短大生の授業をとおして
-
コンピュータ科学の基礎, その教育研究と実践 VII : グラフの周遊問題に関わる日常の問題から
-
コンピュータ科学の基礎, その教育研究と実践 VII : グラフの周遊問題に関わる日常の問題から
-
F11 変数性に関する概念変容を捉える枠組みの設定 : 式の構文と意味に着目して(F【関数、確率・統計】,論文発表の部)
-
コンピュータ科学の基礎・その教育と実践IV : 子どもがつくる算数をめざして
-
コンピュータ科学の基礎・その教育と実践IV : 子どもがつくる算数をめざして
-
変数性に関する概念変容の数学史的背景--擬変数の機能の考察を中心に
-
数学教育における数学史の活用の方法論--課題分析のための理論的枠組みの提案
-
3G1-F5 教員養成大学における大学生の論証力の問題点(2) : 不可能性の説明に対する評価に焦点をあてて(教育実践・科学授業開発(5),一般研究,次世代の科学力を育てる : 社会とのグラウンディングを実現するために)
-
コンピュータ科学の基礎, その教育の研究と実践I : 内容(ネットワーク)と方法とかかわって
-
コンピュータ科学の基礎, その教育の研究と実践 : 迷路解きのアルゴリズムの教材化
-
教員養成大学における大学生の論証力の問題点(2) : 不可能性の説明に対する評価に焦点をあてて
-
数学教育へのアルゴリズム論的な問題解決のアプローチ
-
数学教育へのアルゴリズム論的な問題解決のアプローチ
-
4. 学校現場でつけたい算数・数学の力(『数学的な考え方』から見た日本の数学教育の文化論,シンポジウム)
-
無理数の学習指導における概念変容の基礎的考察 : 「内容」と「形式」の相互連関としての数学史を手がかりにして
-
数学学習における「式」のコンセプションの変容に関する一考察 : 限量詞的発想の生起について
-
数学学習における概念変容のモデル化に向けた基礎研究 : 概念変容の諸相についての考察を中心に
-
数学教育における概念変容の特徴づけに関する一考察 : 離散量から連続量への展開を例として
-
変数性に関する概念変容場面のデザインに向けた基礎研究(I) : 「式」のコンセプションの変容をどう捉えるべきか
-
変数性に関する概念変容場面のデザインに向けた基礎研究(1)「式」のコンセプションの変容をどう捉えるべきか
-
高校数学における「証明と論駁」法に基づく数学的活動に関する研究 : 大学生を対象とした予備調査の分析
-
具象化理論に基づく変数性のコンセプションの変容に関する研究 : 小学校第6学年における教授実験のデザイン
-
具象化理論に基づく変数性のコンセプションの変容に関する研究 : 小学校第6学年における教授実験のデザイン
-
算数と数学の接続における2つの一般化に関する開発研究 : Regular Lecture (ICME11)の報告を中心に(世界の教育改造モデルとしての日本の算数・数学教育とその成果)
もっと見る
閉じる
スポンサーリンク