Effect of Nitrogen and Other Alloying Elements on the Low-Temperature Brittleness of Steel. III : Nitrogen Fix and Nitrogen in Quench-Tempered Steel
スポンサーリンク
概要
- 論文の詳細を見る
The following have been made clear by examining the effect on the low-temperature brittleness of steel of aluminium and titanium as the elements fixing nitrogen. (1) The effect of nitrogen decreases with the addition of aluminium and titanium ; (2) in the steel containing 0.32% of carbon, AlN lowers a little the pulse value of steel, but has little effect on the transition temperature ; (3) unlike the case of adding aluminium, the addition of titanium slightly raises the maximum pulse value and tends to raise the transition temperature ; (4) when the effect of nitrogen on the low-temperature brittleness of the steel containing phosphorus appears relatively large, the addition of titanium clearly improves the low-temperature brittleness of the steel ; (5) the effect of nitrogen can be observed even in the steel quench-tempered, the effect of nitrogen similar to the case of air-cooling appears on slow-cooling after tempering and the aging phenomenon appears on rapid-cooling after tempering ; (6) in both cases, the transition temperature rises proportionally to the amount of nitrogen content.
- 東北大学の論文
著者
-
Imai Yunoshin
The Research Institute For Iron Steel And Other Metals
-
ISHIZAKI Tetsuro
Technical Development Department, Fuji Iron and Steel Co., Ltd.
関連論文
- Effect of Cyclic Heat-Treatments on the Martensitic Transformation in Iron-Nickel Binary Alloys
- Effect of Micro-Structure on Creep of 25% Chromium Steel
- Relationship between the Solid Phase Equilibrium and the Isothermal Martensite Transformation in Fe-Ni-Cr and Fe-Ni-Mn Alloys
- Structural Diagrams and Phase Reactions of Fe-Cr-N Ternary System
- Microstructures and Nitrides of Fe-Cr-N Ternary System
- Residual Stresses in Steels due to Heat Treatments
- Effect of Nickel on the Solubility and Diffusion of Nitrogen in Alpha-Iron
- Study on A_3 Transformation of Dispersion-Strengthened Iron
- Mechanical and Physical Properties of Dispersion-Strengthened Iron
- Self-Diffusion in Single Crystal of Silver Containing Alumina Particles
- Studies on the Yield Strength of Dispersion Strengthened Alloys
- Effects of Alloying Element on Supercooled A_3 Transformation of Iron
- Effect of Cooling Rate on A_3 Transformation Temperatures of Iron and Iron-Nickel Binary Alloys
- Thermodynamic Study on the Transformation of Austenite into Martensite in Iron-High Nitrogen and Iron-Carbon Binary System
- Sub-Zero Treatment of Quenched Steel. I : On the Stabilization of Retained Austenite
- The Precipitation of χ-carbide in the Tempering Process of High Carbon Steels
- Transformation of Retained Austenite and Observation of Cracks under Low-Cycle Fatigue Testing
- Solubility of Nitrogen in Austenitic Iron under High Nitrogen Pressure and Thermodynamic Properties of Iron-Nitrogen Interstitial Solid Solution
- Development of High Temperature and High Pressure Equipment for Study of Reaction between Gas and Metals, and Some Experimental Results
- Structural Diagrams and Solid Phase Reactions of the Quaternary 7% Cr-Fe-C-N System
- Structural Diagrams and Phase Reactions of the Quaternary 12%Cr-Fe-C-N System
- Constitutional Diagrams of Iron-Rich Corner in 18% Cr-Fe-C-N System
- The Temperature and Stress Dependences of the Steady-State Creep Rate of Ferritic Iron-Chromium Alloys
- Nitrogen as the Alloying Element in Steels. I : On the Effect of Nitrogen on the Temper-Brittleness in Steels
- Study of the Mechanical Properties of the Unnotched and Notched Specimens under High Speed Impact-Bending
- X-ray Investigation of Low-Cycle Fatigue in Martensitic Steels
- Isothermal Martensitic Transformation in Fe-Ni-Cr Alloy
- Precipitation of Carbides in 12% Cr Steel during Tempering
- The Effects of Grain Size and Precipitate on Strength of Nb-Treated Steels
- Precipitation Behaviours of Austenitic Steel of Manganese-Chromium Type Containing Vanadium
- Anomalous Contraction near 500℃ in Austenitic Heat-Resisting Alloys Containing Chromium and Nickel
- Effect of Nitrogen and Other Alloying Elements on the Low-Temperature Brittleness of Steel. III : Nitrogen Fix and Nitrogen in Quench-Tempered Steel
- Effect of Nitrogen and Few Other Elements on Strain Aging of Steels
- Effect of Nitrogen and Other Alloying Elements on the Low-Temperature Brittleness of Steel. IV : Effect of Quench-Tempering
- Corrosion of Chromium Steel by Liquid Bismuth
- Effect of Molybdenum upon the High-Temperature Oxidation and the V_2O_5 Attack on Ni-Cr-Base Alloys
- Corrosion of Carbon Steel by Liquid Bismuth
- Effect of Nitrogen and Other Alloying Elements on the Low-Temperature Brittleness of Steel. I : Correlation of Nitrogen and Carbon
- New Secondary Phase in Austenitic Fe-Co-Cr-Ni Base Heat-Resisting Alloy
- Determination of Condition for Electrolytic Extractions of Nitrides in Steel by Means of Potentiostat
- Residual Stresses in Steels due to Heat Treatments. II
- Effect of Nitrogen and Other Alloying Elements on the Low-Temperature Brittleness of Steel. II : Correlative Effect of Nitrogen and Phosphorus
- Precipitation Process and Age-Hardenability of Austenitic Fe-Co-Cr-Ni Base Heat-Resisting Alloys
- Phase Translation in Hadfield Steel Isothermally Heated at 500℃ after Solution Treatment
- Anomaly in Dilatation on Heating of Cold-worked 18-8 Stainless Steel
- Corrosion and Erosion of Ferritic Steel by Liquid Bismuth
- Sub-Zero Treatment of Quenched Steel. II : Effect of the Addition of Small Amount of Elements on the Stabilization of Retained Austenite
- Nitrogen as an Alloying Element in Steel : Effect of Nitrogen on Quench-Aging of Steels
- Nitrogen as Alloying Element in Steels. II : On the Effect of Nitrogen on Blue-Brittleness in Steels
- ε-phase Formation in Solution-Treated and Heated Hadfield Steel
- Heat-Treatment of Forged Roll Steel
- Sub Zero Treatment of Quenched Steel. III : Effect of Aging on the Stabilization of Retained Austenite
- Sintered Intermetallic Compound NiAl as High Temperature Material. II
- Study on Sintering Process of Titanium Carbide by Measuring the Change in Electrical Resistivity
- New Oxidizing Method for Revealing Austenitic Grain
- A Study on the Dispersion-Strengthened Steel
- An Investigation on Isothermal Transformation in Steels. I : The Cause of Modification of S-Curves of Some Alloy Steels
- Sintered Intermetallic Compound NiAl as High Temperature Material. I
- An Investigation on Boron-Treated Steels. I : On the Hardenability of Boron-Treated Medium-Carbon Steels, especially the Effect of Nitrogen-Content in Steels
- Carbide precipitation by Heating High-Manganese Steel after Solution Treatment
- Nitrogen as an Alloying Element in Steels : The Effect of Nitrogen on the Tempering of Cold-Worked Steels
- On the Mechanism of Boron Hardenability