In Vivo and in Vitro Binding of (-)-Hydroxyhexamide, a Major Metabolite of Acetohexamide, to Rabbit Serum
スポンサーリンク
概要
- 論文の詳細を見る
The in vivo and in vitro bindings of (-)-hydroxyhexamide, a major metabolite of acetohexamide, to rabbit serum were examined by using an ultrafiltration method. The in vivo serum protein binding of (-)-hydroxyhexamide was much lower than the in vitro serum protein binding. The in vitro serum protein binding of (-)-hydroxyhexamide was strongly displaced by the addition of acetohexamide. Furthermore, the in vitro serum protein binding of (-)-hydroxyhexamide in the presence of acetohexamide and (-)-hydroxyhexamide at the same concentrations as those found 1.0 h after acetohexamide administration was approximately similar to the in vivo serum protein binding of (-)-hydroxyhexamide. These results lead us to conclude that acetohexamide, the parent drug of (-)-hydroxyhexamide, plays an important role in the in vivo serum protein binding of (-)-hydroxyhexamide.
- 公益社団法人日本薬学会の論文
著者
-
Imamura Yorishige
Faculty Of Pharmaceutical Sciences Kumamoto University
-
OTAGIRI MASAKI
Faculty of Pharmaceutical Science, Kumamoto University
-
KOJIMA Yuichiro
Faculty of Pharmaceutical Sciences, Kumamoto University
-
ABE Hiroko
Faculty of Pharmaceutical Sciences, Kumamoto University
-
Abe H
Hiroshima Univ. School Of Medicine Hiroshima Jpn
-
Kojima Yuichiro
Faculty Of Pharmaceutical Sciences Kumamoto University
-
Otagiri Masaki
Faculty Of Pharmaceutical Science Kumamoto University
関連論文
- Enzymatic Hydrolysis of the Horn and Hoof of Cow and Buffalo
- Differential Pharmacokinetics of Acetohexamide in Male Wistar-Imamichi and Sprague-Dawley Rats : Role of Microsomal Carbonyl Reductase(Biopharmacy)
- INCLUSION COMPLEXATIONS OF FLURBIPROFEN WITH β-CYCLODEXTRIN AND TRI-O-METHYL-β-CYCLODEXTRIN
- Interaction Mode of Dicumarol and Its Derivatives with Human Serum Albumin, α_1-Acid Glycoprotein and Asialo α_1-Acid Glycoprotein
- Catalytic Properties for Naphthoquinones and Partial Primary Structure of Rabbit Heart Acetohexamide Reductase.
- Catalytic Properties for Naphthoquinones and Partial Primary Structure of Rabbit Heart Acetohexamide Reductase
- Carbonyl Reductase Purified from Rabbit Liver Is Not the Product of a Carbonyl Reductase Gene (RCBR5 or RCBR6)Cloned from the Rabbit Liver cDNA Libray.
- Carbonyl Reductase Purified from Rabbit Liver Is Not the Product of a Carbonyl Reductase Gene (RCBR5 or RCBR6) Cloned from the Rabbit Liver cDNA Library
- Characterization of Acetohexamide Reductases Purified from Rabbit Liver, Kidney, and Heart: Structural Requirements for Substrates and Inhibitors
- Purifiation and Catalytic Properties of a Novel Acetohexamide-Reducing Enzyme from Rabbit Heart
- Stereoselective Reduction of Acetohexamide in Cytosol of Rabbit Liver
- Stability of a Cisplatin-Chondroitin Sulfate A Complex in Plasma and Kidney in Terms of Protein Binding
- Sex-Dependent Pharmacokinetics and in Vitro Reductive Metabolism of Acetohexamide in Wistar-Imamichi Rats
- Individual Variation of Acetohexamide Reductase Activities in Liver Microsomes and Cytosol of Rats
- Wistar-Imamichi Rats Exhibit a Strong Resistance to Cadmium Toxicity
- High-performance liquid chromatography with chemiluminescence detection of penbutolol and its hydroxylated metabolite in rat plasma
- Effects of Repeated Clarithromycin Administration on the Pharmacokinetic Properties of Pindolol in Rats
- Effects of α_1-Acid Glycoprotein on Erythrocyte Deformability and Membrane Stabilization(Biopharmacy)
- Characterization of Ligand Binding Sites on the α_1-Acid Glycoprotein in Humans, Bovines and Dogs
- EFFECT OF REPEATED ADMINISTRATION OF PYRIDINOLCARBAMATE ON THE RENAL EXCRETION OF SOME DRUGS IN RABBITS
- Characterization of a Binding Site of UCN-01,a Novel Anticancer Drug on α_1-Acid Glycoprotein
- Genetic Evidence of Resistance to Cadmium Toxicity in Wistar-Imamichi Rats
- Inclusion Complex of 3,9-Bis(N, N-dimethylcarbamoyloxy)-5H-benzofuro[3,2-c]quinoline-6-one (KCA-098) with Heptakis(2,6-di-O-methyl)-β-cyclodextrin : Interaction and Dissolution Properties
- Effect of Grinding with Hydroxypropyl Cellulose on the Dissolution and Particle Size of a Poorly Water-Soluble Drug
- Inhibitory Effects of Flavonoids on Rabbit Heart Carbonyl Reductase
- Enzymatic Synthesis of (-)- and (+)-Acetoxyhexamides and (-)- and (+)-Hydroxyhexamides
- Inhibition of Rabbit Heart Carbonyl Reductase by Fatty Acids
- Purification and Catalytic Properties of a Tetrameric Carbony1 Reductase from Rabbit heart
- STUDIES ON BEFUNOLOL REDUCTASE FROM RABBIT LIVER
- In Vivo and in Vitro Binding of (-)-Hydroxyhexamide, a Major Metabolite of Acetohexamide, to Rabbit Serum
- Metabolic Reduction of Acetohexamide in Rat Kidney : Sex Difference and Effect of Streptozotocin-Induced Diabetes
- SEX DIFFERENCE OF ACETOHEXAMIDE REDUCTION IN RAT LIVER
- EFFECTS OF VARIOUS FACTORS ON METABOLIC REDUCTION OF ACETOHEXAMIDE
- REDUCTION OF ACETOHEXAMIDE BY RABBIT HEART CYTOSOL
- Effect of Phenylbutazone on Serum Protein Binding and Pharmacokinetic Behavior of Sulfadimethoxine in Rabbits, Dogs and Rats
- SPECIES DIFFERENCE IN PROTEIN BINDING DISPLACEMENT OF SULFADIMETHOXINE
- EFFECT OF PHENYLBUTAZONE ON SERUM PROTEIN BINDING OF SULFADIMETHOXINE IN DIFFERENT ANIMAL SPECIES
- MODEL ANALYSIS OF INTERFACIAL TRANSFER AND ABSORPTION BEHAVIOR OF DRUG FOLLOWING DISSOLUTION FROM COMPRESSED TABLET : IN THE CASES OF SULFONAMIDES AND β-CYCLODEXTRIN COMPLEXES
- IMPROVEMENT OF ORAL BIOAVAILABILITY OF PREDNISOLONE BY β-CYCLODEXTRIN COMPLEXATION IN HUMANS
- ENHANCED ORAL BIOAVAILABILITY OF ANTIINFRAMMATORY DRUG FLURBIPROFEN IN RABBITS BY TRI-O-METHYL-β-CYCLODEXTRIN COMPLEXATION
- IMPROVEMENTS OF SOME PHARMACEUTICAL CHARACTERISTICS OF VARIOUS STEROIDAL DRUGS BY CYCLODEXTRIN COMPLEXATION
- REDUCTION IN THE LOCAL TISSUE TOXICITY OF CHLORPROMAZINE BY β-CYCLODEXTRIN COMPLEXATION
- Study of Interaction of Pranoprofen with Human Serum Albumin : Binding Properties of Enantiomers and Metabolite
- ENANTIOSELECTIVE ORAL BIOAVAILABILITY OF O-ISOVALERYL PROPRANOLOL AS A POTENTIAL PRODRUG OF PROPRANOLOL
- Interaction of Fluorescent Probe 7-Anilino-4-methylcoumarin-3-(p)-benzoic Acid with Egg Albumin
- ENHANCED BIOAVAILABILITY OF DIGOXIN BY γ-CYCLODEXTRIN COMPLEXATION
- REDUCTION IN THE LOCAL TOXICITY OF CHLORPROMACINE AND ITS PHOTOPRODUCTS BY CYCLODEXTRIN COMPLEXATION
- PROTECTIVE MECHANISM OF β-CYCLODEXIRIN FOR THE HEMOLYSIS INDUCED WITH PHENOTHIAZINE NEUROLEPTICS IN VITRO
- CYCLODEXTRIN-INDUCED HEMOLYSIS AND SHAPE CHANGES OF HUMAN ERYTHROCYTES IN VITRO
- PROTECTIVE EFFECTS OF CYCLODEXTRINS ON THE HEMOLYSIS INDUCED WITH TRANQUILIZING PHENOTHIAZINES
- PROTECTIVE EFFECTS OF CYCLODEXTRINS ON DRUG-INDUCED HEMOLYSIS IN VITRO
- Nanomolar Quantification and Identification of Various Nitrosothiols by High Performance Liquid Chromatography Coupled with Flow Reactors of Metals and Griess Reagent
- Enhanced Dissolution of Poorly Water-Soluble Drugs by Water-Soluble Gelatin
- THE ROLE OF SERUM PROTEIN BINDING IN THE INTESTINAL ABSORPTION OF DRUGS
- Opposite Effects of Metoclopramide and Propantheline on Intestinal Absorption of Imipramine in Rats
- INTERACTION OF WARFARIN WITH HUMAN SERUM ALBUMIN
- Effect of N-B Transition on the Microenvironment Surrounding ^Cys in Human Serum Albumin
- Activity coefficients of dimethyl-.BETA.-cyclodextrin in aqueous solutions.
- The structure of the cyclodextrin complex. XI. Crystal structure of hexakis-(2,3,6-tri-o-methyl)-.ALPHA.-cyclodextrin-p-iodoaniline monohydrate.
- The structure of the cyclodextrin complex. XIV. Crystal structure of hexakis(2,3,6-tri-O-methyl)-.ALPHA.-cyclodextrin-benzaldehyde (1:1) complex.
- The structure of the cyclodextrin complex. XVIII. Crystal structure of .BETA.-cyclodextrin-benzyl alcohol (1:1) complex pentahydrate.
- The structure of the cyclodextrin complex. XV. Crystal structure of hexakis(2,3,6-tri-O-methyl)-.ALPHA.-cyclodextrin-p-nitrophenol(1:1)complex monohydrate.
- The structure of the cyclodextrin complex. XIX Crystal structures of hexakis(2,3,6-tri-O-methyl)-.ALPHA.-cyclodextrin complexes with (S)- and (R)-mandelic acid. Chiral recognition through the induced-fit conformational change of the macrocyclic ring.
- The structure of the cyclodextrin complex. X. Crystal structure of .ALPHA.-cyclodextrin-benzaldehyde (1:1) complex hexahyderate.
- The structure of the cyclodextrin complex. XVI. Crystal structure of heptakis(2,3,6-tri-O-methyl)-.BETA.-cyclodextrin-p-iodophenol(1:1) complex tetrahydrate.