Driving Method Compensating for the Hysteresis of Polycrystalline Silicon Thin-Film Transistors for Active-Matrix Organic Light-Emitting Diode Displays
スポンサーリンク
概要
- 論文の詳細を見る
A new driving method for active-matrix organic light-emitting diode displays is proposed and evaluated. The pixel structure of the proposed driving method is composed of three thin-film transistors (TFTs) and one capacitor. It inserts black data into display images to reset driving TFTs for the purpose of maintaining constant electrical characteristics of driving TFTs. The proposed driving scheme is less sensitive to the hysteresis of low-temperature polycrystalline silicon (LTPS) TFTs than the conventional pixel structure with two TFTs and one capacitor, and this scheme can virtually eliminate the recoverable residual image that occurs owing to the hysteresis characteristics of LTPS TFTs. In the proposed driving scheme, black data are inserted into displayed images so that the motion image quality is improved.
- Published by the Japan Society of Applied Physics through the Institute of Pure and Applied Physicsの論文
- 2009-05-25
著者
-
Kim Ohyun
Department Of Electrical And Electronic Engineering
-
Chung Hoon-ju
School Of Electronic Engineering Kumoh National Institute Of Technology
-
Chung Hoon-Ju
School of Electronic Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk 730-701, Republic of Korea
-
Jung Myoung-Hoon
Department of Electronic and Electrical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, Republic of Korea
-
Kim Byeong-Koo
Mobile Applied Product Development Team, LG Display Co., Ltd., 161 Imsu-dong, Gumi, Gyeongbuk 730-350, Republic of Korea
関連論文
- Low-Temperature-Processed Polycrystalline Silicon Thin-Film Transistors Using Titanium Disilicide Contacts for Source and Drain
- Three-Level Charge-Pumping Technique for Grain-Boundary Trap Evaluation in Polysilicon Thin Film Transistors
- Prevention of Oxygen Incorporation in poly-Si_Ge_x Deposition with Interfacial Amorphous Silicon Layer
- Characterization of Proximity Correction in 100-nm-Regime X-Ray Lithography
- Novel Sub-10nm Polymer Thin Film Resistance Switching Device
- Identification of Grain-Boundary Trap Properties Using Three-Level Charge-Pumping Technique in Polysilicon Thin-Film Transistors
- Analysis of Multilayer Structure for Reflection of Extreme-Ultraviolet Wavelength
- Dose and Shape Modification Proximity Effect Correction for Forward-Scattering Range Scale Features in Electron Beam Lithography
- Low Temperature (≤550℃) Fabrication of CMOS TFT's on Rapid-Thermal CVD Polycrystalline Silicon-Germanium Films
- Low Temperature(≦550℃) CMOS Thin-Film Transistors in RTCVD Poly-Si_Ge_ Films
- PMOS Thin-Film Transistors Fabricated in RTCVD Polycrystalline Silicon Germanium Films
- Effect of Source/Drain Doping Gradient on Threshold Voltage Variation in Double-Gate Fin Field Effect Transistors as Determined by Discrete Random Doping
- Embedded Touch Sensing Circuit Using Mutual Capacitance for Active-Matrix Organic Light-Emitting Diode Display
- Voltage-Programming-Based Pixel Circuit to Compensate for Threshold Voltage and Mobility Using Natural Capacitance of Organic Light-Emitting Diode
- Dual-Gate Polycrystalline Silicon Thin-Film Transistors with Intermediate Lightly Doped Region
- Unipolar Switching Characteristics of Nonvolatile Memory Devices Based on Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) Thin Films
- Unipolar Memory Operation of Resistance Random-Access Memory Using Compliance Current Controller
- Computer Design of Source/Drain Extension Region Profile and Spacer Length in Tri-Gate Body-Tied Fin Field-Effect Transistors with High-$k$ Gate Dielectrics
- A Bootstrapped Analog Switch with Constant On-Resistance
- Process Optimization for Synthesis of High-Quality Graphene Films by Low-Pressure Chemical Vapor Deposition (Special Issue : Microprocesses and Nanotechnology)
- Effects of Geometrical Fin Parameters on Transfer Characteristics in Triple-Gate Fin Field Effect Transistors
- Optimized Multigrid Strategy for Accurate Flare Modeling with Three-Dimensional Mask Effect in Extreme-Ultraviolet Lithography
- Driving Method Compensating for the Hysteresis of Polycrystalline Silicon Thin-Film Transistors for Active-Matrix Organic Light-Emitting Diode Displays
- Novel Digital Driving Method Using Dual Scan for Active Matrix Organic Light-Emitting Diode Displays
- Nonvolatile Resistive Memory Device Based on Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) Thin Film for Transparent and Flexible Applications
- Fabrication of P-Channel MOS TFT's on Rapid Thermal CVD Polycrystalline Silicon-Germanium Films
- Dose and Shape Modification Proximity Effect Correction for Forward-Scattering Range Scale Features in Electron Beam Lithography