α,β-Unsaturated Carboxylic Acid Derivatives. IV. General Synthesis of Unsaturated Unsymmetric 3,6-Disubstituted-2,5-piperazinediones
スポンサーリンク
概要
- 論文の詳細を見る
A general synthetic route to unsymmetric 3,6-dialkylidene and 3-alkylidene-6-arylidene-2,5-piperazinediones is described. The condensation reaction of ethyl 2-oxocarboxylates with chloroacetamide in the presence of several acidic catalysts afforded N-chloroacetyldehydroamino acid esters. These compounds were cyclized in saturated ethanolic ammonia to give 3-monoalkylidene and benzylidene-2,5-piperazinediones (2). Compound 2 and 1-monoacetyl- or 1,4-diacetyl-3-alkylidene and benzylidene-2,5-piperazinediones, derived from a reaction of 2 with acetic anhydride, were condensed with alkyl and arylaldehyde in the presence of bases to afford 5.
- 日本化学会の論文
著者
-
SATO Ken-ichi
Laboratory of Molecular Biology, Biosignal Research Center, Kobe University
-
Shin Chung-gi
Laboratory Of Oraganic Chemistry Faculty Of Engineering Kanagawa University
-
辛 重基
Laboratory of Organic Chemistry, Faculty of Technology, Kanagawa University
-
佐藤 憲一
Laboratory of Organic Chemistry, Faculty of Engineering, Kanagawa University
-
Ohtsuka Akira
Laboratory of Chemistry for Natural Products, Faculty of Science, Tokyo Institute of Technology
-
Sato Ken-ichi
Laboratory of Chemistry for Natural Products, Faculty of Science, Tokyo Institute of Technology
-
Ohtsuka Akira
Laboratory of Organic Chemistry, Faculty of Technology, Kanagawa University
-
Shin Chung-gi
Laboratory of Chemistry for Natural Products, Faculty of Science, Tokyo Institute of Technology
関連論文
- Hydrogen peroxide induces Src family tyrosine kinase-dependent activation of Xenopus eggs
- Total Synthesis of a Macrocyclic Antibiotic, Micrococcin P_1
- Total Synthesis of a Macrocyclic Antibiotic, Micrococcin P
- Convenient Synthesis of the Central 3,6-Di(2-thiazolyl)-2-(4-thiazolyl)-pyridine Skeleton of a Macrocyclic Antibiotic, GE 2270 A
- Synthesis of a Fragment A Derivative of an Antibiotic, Nosiheptide
- Total Synthesis of Antibiotic, Micrococcin P, from 2, 3, 6-Polythiazolesubstituted Pyridine Skeleton[Fragment A-C]
- Synthesis of the Central Heterocyclic Skeleton of an Antibiotic, A10255
- Useful Synthesis of 2, 3, 6-Polythiazolesubstituted Pyridine Skeleton [Fragment A-C]of Peptide Antibiotic, Micrococcin P
- Dehydrooligopeptides. XIV. Syntheses of 2-[(Z)-1-Amino-1-alken-1-yl]oxazole-4-carboxylic Acid and the Main Common Skeleton of Thiostrepton Peptide Antibiotics, A10255G and J^
- Syntheses of 2-[(1S,3S)-1-Amino-3-carboxy-3-hydroxypropyl]-thiazole-4-carboxylic Acid and the Tripeptide Skeleton of Nosiheptide Containing the Acid
- Dehydrooligopeptides. XVII. Practical Syntheses of All of the Diastereomers of N,N-Protected 2,3-Diaminobutanoic Acids from L-and D-Threonine Derivatives
- A Convenient Synthesis of Methyl 2-[2-(Amino)ethenyl-bithiazolyl] thiazoline-4-carboxylate, an Important Skeleton of Cyclothiazomycin
- Synthesis of a Common Main Skeleton of Thiostrepton Peptide Antibiotics, A 10255G and J
- Practical Synthesis of Oligodehydroalanine Derivatives by Repetition of Stepwise Elongation of Serine Derivative and β-Elimination
- Practical Synthesis of Oxazoles Incorporated in α-Dehydroamino Acid and Dehydropeptide Structures
- Convenient Syntheses of Thiazoles Incorporated with α-Dehydroamino Acid and Dehydropeptide Structures
- Crystal Structure of(1R, 2R, 3S, 4S, 5S, 6S, 7R, 9S)-6-Azido-7-cyano-3-C-hydroxy-methyl-3, 3'-di-O-isopropylidene-9-methoxy-2, 4, 5-tris(O-methoxymethyl)-2, 3, 4, 5-tetrahydroxy-8-oxabicyclo[4. 3. 0]nonane, toward Tetrodotoxin
- Total Synthesis of Bistratamides G and H from Various Kinds of ΔAla and ΔAbu-Containing Oligopeptides
- Convenient Syntheses of 3-Deoxy-D-manno-2-octulosonic Acid (KDO) and 3-Deoxy-D-glycero-D-galacto-2-nonulosonic Acid (KDN) Derivatives from D-Mannose
- Convenient Synthesis of the Main Dehydrohexapeptide Skeleton Constituting a Macrocyclic Antibiotic, Berninamycin A
- Total Syntheses of Bistratamides J, E, and H from Two Types of ΔAla-Containing Oligopeptides
- Useful Intermediates, 3-C-Dichloromethyl Furanose Derivatives, for the Synthesis of Branched-Chain Functionalized Sugars
- Novel Synthesis of the Main Central 2,3,6-Trisubstituted Pyridine Skeleton [Fragment A-B-C] of a Macrobicyclic Antibiotic, Cyclothiazomycin
- Convenient Synthesis of a Central 2,3,6-Trisubstituted Pyridine Skeleton of a Macrobicyclic Antibiotic, Cyclothiazomycin
- Useful Synthesis of Fragment A-C-D of a Thiostrepton-type Macrocyclic Antibiotic, Thiocilline I
- Total Synthesis of Bistratamide G, a Metabolite of the Philippines Ascidian Lissoclinum bistratum, from Dehydrotripeptides
- Convenient Synthesis of the Main Tridehydropentapeptide Skeleton for a Macrocyclic Antibiotic, Sulfomycin I
- Asymmetric Synthesis of the Main Pyridine Skeleton for a Macrobicyclic Antibiotic, Cyclothiazomycin
- Convenient Synthesis of (3S, 5S)-5-Hydroxy- and (3R, 5S)-5-Chloropiperazic Acids of a Peptide Antibiotic, Monamycin G^3
- Dehydrooligopeptides. XX. Unusual Peptide Bond Cleavage of Dehydrotripeptide Esters Containing α-Dehydroamino Acid Residue at P_2 by Using Papain
- Dehydrooligopeptides. XVIII. Enzymatic Hydrolysis and Coupling of Dehydrodipeptide Esters Containing α-Dehydroamino Acid Residue by Using Papain
- Convenient Synthesis of Dehydrooligopeptides Containing α-Dehydroamino Acid Residue Alone
- Dehydrooligopeptides. XII. : Convenient Synthesis of Various Kinds of N-Benzyloxycarbonyl-α-dehydroamino Acid Methyl Esters
- Crystal Structure of Potential Key Compounds, DL-(1, 2, 3', 4, 5, 6'/3, 6)-6-Azido-5'-O-t-butyldiphenylsilyl-6-(cyano)hydroxymethyl-3, 5-di-C-hydroxymethyl-1, 2 : 3, 3'-di-O-isopropylidene-4-O-methoxymethyl-1, 2, 3, 4-cyclohexanetetrol, toward(±)-Tetrodot
- An Efficient Deoxysugar Synthesis using Bu4NBH4 via an SN2 Reduction
- Total Synthesis of a Novel β-Glucosidase Inhibitor, Cyclophellitol Starting from D-Glucose
- Reaction of α-Hydroxydichloromethyl Derivatives with Cesium Acetate
- A Novel Method for Constructions of β-D-Mannosidic, 2-Acetamido-2-deoxy-β-D-mannosidic, and 2-Deoxy-β-D-arabino-hexopyranosidic Units from the Bis(triflate) Derivative of β-D-Galactoside
- A Novel Method for Constructing β-D-Mannosidic, 2-Acetamido-2-deoxy-β-D-mannosidic, and 2-Deoxy-D-arabino-hexopyranosidic Units from the Bis(triflate) Derivative of β-D-Galactoside
- Facile Syntheses of (s, s)-2, 3-Diaminobutyric Acid and the Acid Containing N-Terminal Tripeptide of Antrimycins
- Branched-chain Sugars. XVII. Stereoselectivity in the Oxidation of Several Methyl 4,6-O-Benzylidene-2-C- or -3-C-methylene-α- and-β-D-hexopyranosides with m-Chloroperbenzoic Acid
- Branched-Chain Sugars. I. On the Configuration of Branched-Chain Derivatives of 1,2 : 5,6-Di-O-isopropylidene-α-D-ribo-hexofuranos-3-ulose
- Branched-chain Sugars. XXIX. Synthesis of Moenuronic Acid (4-C-Methyl-D-glucuronic Acid)
- Branched-chain Sugars. IX. Reaction of 3,6-Anhydro-1,2-O-isopropylidene-α-D-ribo-hexofuranos-3-ulose with Nitromethane or Hydrogen Cyanide
- Branched-chain Sugars. VIII. On the Configuration of Branched-chain Sugars from Methyl 3-O-Benzoyl-4,6-O-benzylidene-α-D-arabino-hexopyranosid-2-ulose
- Branched-chain Sugars. XXIII. Stereoselectivities in the Addition of Nucleophiles to Several 4-Uloses
- Branched-chain Sugars. VI. Reaction of Methylene Dimagnesium Bromide with Uloses
- Branched-chain Sugars. XXIV. Synthesis of Methyl 6-Deoxy-3-C-methyl-β-D-gulopyranoside (Methyl β-Virenoside)
- Branched-chain Sugars. XX. Kinetic Studies on the Epimerization of 1,2 : 5,6-Di-O-isopropylidene-3-C-nitromethyl-α-D-allofuranose
- α,β-Unsaturated Carboxylic Acid Derivatives. IV. General Synthesis of Unsaturated Unsymmetric 3,6-Disubstituted-2,5-piperazinediones
- Aminosugars. XXVIII. A Facile Synthesis of Benzyl α- and β-Kasugaminides via the Corresponding Abequosides
- Branched-chain Sugars. XII. The Stereoselectivities in the Reaction of Methyl 4,6-O-Benzylidene-α- and -β-D-hexopyranosid-3-uloses with Diazomethane
- Synthesis of 2,2-Di-C-methyl-2-deoxy- and 4,4-Di-C-methyl-4-deoxypyranosides via Michael Addition of Conjugated Enopyranosiduloses
- Branched-chain Sugars. XIX. On the Application of 13C NMR Spectroscopy to the Configurational Assignment of 3-C-Substituents of Aldohexopyranose Derivatives
- Dehydrooligopeptides. XIII. Selective Enzymatic Hydrolysis of N-Protected .ALPHA.-Dehydroglutamic Acid Diesters and Their Analogs Using Papain as Catalyst.
- Dehydrooligopeptides. X. Useful synthetic method for (E)- and (Z)-isomers of dehydroaspartic acids, and their .DELTA.1,2-dehydrodipeptides by the base-catalyzed .BETA.-elimination.
- The synthesis and reaction of spiro(oxolane-2,2'-piperazine)-3',6'-diones with N-bromosuccinimide in the presence or absence of water.
- Synthesis of (3Z, 6E)-1-N-Methylalbonoursin, a New Metabolite from Streptomyces albus
- Dehydrooligopeptides. VIII. Convenient syntheses of various dehydrotyrosine derivatives protected with useful N,O-protecting groups via N-carboxy dehydrotyrosine anhydrides.
- .ALPHA.,.BETA.-Unsaturated carboxylic acid derivatives. XIII. The synthesis and configuration of alkyl 2-acylamino-2-alkenoates and their cyclized 2,5-piperazinedione derivatives.
- Dehydrooligopeptides. XI. Facile syntheses of various kinds of dehydrodi- and tripeptides, and dehydroenkephalins containing .DELTA.Tyr residue by using N-carboxydehydrotyrosine anhydride.
- Dehydrooligopeptides. IX. Syntheses and conversions of .ALPHA.-dehydroglutamine derivatives to N-carboxy-.ALPHA.-dehydroglutamine anhydride and .DELTA.1-dehydroglutaminyldipeptides.
- Dehydrooligopeptides. III. Synthesis of (Z,Z)- and (Z,E)-geometric isomers of dehydrodipeptides and their base-catalyzed transformation to the hydantoin derivatives.
- The confirmation of the configuration of ethyl 2-bromo-3-nitro-2-alkenoate by 13C NMR spectroscopy.
- Dehydrooligopeptides. VI Facile transformation of .ALPHA.-phosphoranylideneamino-.ALPHA.-alkenoates to .DELTA.2-dehydrodipeptide derivatives.
- Dehydrooligopeptides. VII Convenient synthesis of various dehydrodi- and tripeptide esters by using N-carboxy .ALPHA.-dehydroamino acid anhydride.
- .ALPHA.,.BETA.-Unsaturated carboxylic acid derivatives. XVII. The facile synthesis of ethyl .ALPHA.-azido-.ALPHA.-alkenoates and reduction to ethyl .ALPHA.-amino-.ALPHA.-alkenoates.
- .ALPHA.,.BETA.-Unsaturated carboxylic acid derivatives. XIV. The synthesis and reduction of Diels-Alder adducts from ethyl 3-nitro-2-alkenoates and cyclopentadiene.
- .ALPHA.,.BETA.-Unsaturated carboxylic acid derivatives. XV. The reaction of ethyl 3-nitro-2-alkenoate with bromine azide or bromine, and transformations of the products.
- .ALPHA.,.BETA.-Unsaturated carboxylic acid derivatives. XXI. A novel synthesis of .ALPHA.-dehydroamino acid derivatives by the Arbusov reaction of .ALPHA.-phosphoranylideneamino-2-alkenoates.
- Dehydrooligopeptides. II. The synthesis of dehydrodehydrodipeptides by direct coupling and base-catalyzed .BETA.-elimination.
- Convenient Synthesis of Dehydrooligopeptides by the Solid Phase Method Using N-Carboxy α-Dehydroamino Acid Anhydride
- A Novel Synthesis of Ethyl β-Diethoxyphosphinyl-α,β-unsaturated-carboxylates
- The formation of the main skelton of bicyclomycin by the cyclization of 6-hydroxy-3-(3-hydroxypropyl)-2,5-piperazinedione derivatives.
- The Synthesis and Reaction of α,β-Unsaturated α-Nitrocarboxylic Esters
- .ALPHA.,.BETA.-Unsaturated carboxylic acid derivatives. XIX. The convenient synthesis of .ALPHA.-alkoxy-, .ALPHA.-hydroxy-.ALPHA.-amino acid, and its cyclic dipeptide from .ALPHA.-dehydroamino acid.
- A convenient synthesis of 6-hydroxy-7,9-bis(p-methoxybenzyl)-5-methylene-2-oxa-7,9-diazabicyclo(4.2.2)decane-8,10-dione.
- Oxidative removal of N-(4-methoxybenzyl) group on 2,5-piperazinediones with cerium(IV) diammonium nitrate.
- .ALPHA.,.BETA.-Unsaturated carboxylic acid derivatives. XII. A convenient synthesis of oxazole-4-carboxylic and 3,3-dibromo-2,2-diamino acids.
- α,β-Unsaturated Carboxylic Acid Derivatives. VIII. The Synthesis and Reaction of Esters N-Acyl-N-bromo-α-dehydroamino Acid
- Branched-Chain Sugars. II. On the Configuration of Branched-Chain Sugars from Methyl 2-O-Benzoyl-4,6-O-benzylidene-α-D-ribo-hexopyranosid-3-ulose
- α,β-Unsaturated Carboxylic Acid Derivatives. IX. The Cyclization of α-(N-Acyl-hydroxyamino) Acid Esters with Ammonia or Hydroxylamine
- .ALPHA.,.BETA.-Unsaturated carboxylic acid derivatives. XVI. Synthesis and configuration of Diels-Alder adducts from ethyl 3-nitro-2-alkenoate and 1,3-butadiene.
- α,β-Unsaturated Carboxylic Acid Derivatives. VI. New Synthesis of N-Acyl-α-dehydroamino Acid Esters
- α,β-Unsaturated Carboxylic Acid Derivatives. X. The Synthesis and Reaction of α-Azido-diethoxyphosphinyl-α- and β-alkenes
- Studies on Nitro Carboxylic Acids. III. The Reaction of α-Nitroolefins with Triethyl or Diethyl Phosphite
- .ALPHA.,.BETA.-Unsaturated carboxylic acid derivatives. XI. Convenient synthesis of tert-butyl 2-alkoxy- and hydroxy-2-acetylamino-3-mono- or 3,3-dihaloalkanoates.
- The Independent Isolation of a Primary Enamine and the Tautomeric Imine
- Convenient synthesis of 3-aminocoumarin derivatives by the condensation of 1,4-diacetyl-or 3-substituent-2,5-piperazinediones with various salicylaldehyde derivatives.
- The Reaction of α-Oxo Acids with N-Phenyltriphenylphosphinimine