FORMATION OF GUANINE RIBONUCLEOTIDYL-(3-5)-ADENOSINE IN A FLAVINOGENIC STRAIN OF EREMOTHECIUM ASHBYII
スポンサーリンク
概要
- 論文の詳細を見る
The addition of caffeine caused the accumulation of a new nucleotide compound simultaneously with the rigid inhibition of ribo flavin production in non-growing cells of Eremothecium ashbyii. In the present study we tried to identify the structure of the nucleotide compound using non-growing cells of the mold. 1) It became possible to obtain a large amount of mycelia by massculti vation in a reagent tank. 2) A new nucleotide compound, referred to as compound A in the paper, was extracted with perchloric acid solution and purified by the following subsequent procedures: 1) Dowex 1×2 (HCOO-) column, 2) charcoal treatment, 3) DEAE-Sephadex A25 (Cl-) column, 4) Dowex 1×2 (Cl-) column, and 5) DEAE-Sephadex A25 (HCO3-) column. 3) The structure of the new nucleotide compound was proved to be guanine ribonucleotidyl-(3-5)-adenosine (GpA) from the results of the following analyses: 1) alkaline degradation, 2) UV-spectra, IR-spectra and NMR-spectra, and 3) enzymatic treatments with RNase T2 and phosphodiesterase. 4) The roles of caffeine and guanine ribonucleotidyl-(3-5)-adenosine in connection with flavinogenesis of this mold were discussed.
- 財団法人 学会誌刊行センターの論文
著者
-
西川 善之
京大農栄養化学
-
満田 久輝
Laboratory of Nutritional Chemistry, Faculty of Agriculture, Kyoto University
-
中島 謙二
Laboratory of Nutritional Chemistry, Faculty of Agriculture, Kyoto University
-
西川 善之
Laboratory of Nutritional Chemistry, Faculty of Agriculture, Kyoto University
-
中島 謙二
Laboratory of Nutritional Chemistry, Faculty of Agriculture, Kyoto Univeristy
-
満田 久輝
Laboratory of Nutritional Chemistry, Department of Food Science and Technology, Faculty of Agriculture, Kyoto University
-
満田 久輝
Laboratory of Nutritional Chemistry, Department of Food Science and Technology, Faculty of Agriculture, Kyoto Univeristy
関連論文
- 8.Riboflavin生産菌Eremothecium ashbyiiのRiboflavin synthetaseの性質(JOURNAL OF NUTRITIONAL SCIENCE AND VITAMINOLOGY : 掲載論文要旨)
- 35.Eremothecium ashbyiiのRiboflavin synthetase(研究発表)(日本ビタミン学会 : 第23回大会研究発表要旨)
- Eremothecium ashbyiiのリボフラビン生産に及ぼすメチルキサンチン類(テオブロミン, テオフィリン, カフェイン)の効果
- カフェイン添加時のEremothecium ashbyii菌体内蓄積物質の検討
- 4.Eremothecium ashbyiiの休止菌体におけるビタミンB_2合成と糖代謝との関係(JOURNAL OF NUTRITIONAL SCIENCE AND VITAMINOLOGY : 掲載論文要旨)
- 4.Guanine ribonucleotidyl-(3'-5')-adenosine(GpA)とリボフラビン生合成との関係(JOURNAL OF NUTRITIONAL SCIENCE AND VITAMINOLOGY : 掲載論文要旨)
- 6.Riboflavin生産菌Eremothecium ashbyiiにおけるGuanine ribonucleotidyl-(3′-5′)-adenosineの蓄積(JOURNAL OF NUTRITIONAL SCIENCE AND VITAMINOLOGY : 掲載論文要旨)
- 3-I-8 Eremothecium ashbyiiのビタミンB_2生産におけるCaffeine添加時の蓄積物質の検討(日本ビタミン学会 : 第27回大会研究発表要旨)
- I-7 Eremothecium ashbyiiのビタミンB_2生産におけCaffeine添加時の蓄積物質の検討(研究発表)(日本ビタミン学会 : 第26回大会研究発表要旨)
- Eremothecium ashbyiiのビタミンB_2生産におけるCaffeine添加時の蓄積物質(ビタミンB研究委員会 : 第217回会議研究発表要旨)
- Eremothecium ashbyiiのビタミンB_2生産に及ぼすCaffeineの効果(ビタミンB研究委員会 : 第217回会議研究発表要旨)
- 12-II-13 Eremothecium ashbyiiのビタミンB_2生産に及ぼすメチルキサンチンの効果(研究発表)(日本ビタミン学会 : 第25回大会研究発表要旨)
- 26-I-19 Eremotheium ashbyiiのB_2生産に及ぼますメチルキサンチンの効果(研究発表 日本ビタミン学会 : 第24回大会研究)
- EXAMINATION OF THE STRUCTURE OF AN UN-KNOWN GREEN FLUORESCENT COMPOUND, COMPOUND G2, ACCUMULATED IN NON-GROWING CELLS OF EREMOTHECIUM ASHBYII BY THE ADDITION OF DIMERIC DIACETYL
- ISOLATION AND IDENTIFICATION OF GREEN FLUO-RESCENT COMPOUND ACCUMULATED IN NON-GROWING CELLS OF EREMOTHECIUM ASHBYII BY THE ADDITION OF GLYOXAL
- EFFECTS OF VARIOUS METABOLITES (SUGARS, CARBOXYLIC ACIDS AND ALCOHOLS) ON RIBOFLAVIN FORMATION IN NON-GROW ING CELLS OF ASHBYA GOSSYPII
- RELATION BETWEEN SUGAR METABOLISM AND RIBOFLAVIN FORMATION IN NON-GROWING CELLS OF EREMOTHECIUM ASHBYII
- RELATIONSHIP BETWEEN ACCUMULATION OF GUANINE RIBONUCLEOTIDYL-(3-5)-ADENO-SINE AND FORMATION OF RIBOFLAVIN
- FORMATION OF GUANINE RIBONUCLEOTIDYL-(3-5)-ADENOSINE IN A FLAVINOGENIC STRAIN OF EREMOTHECIUM ASHBYII
- EFFECT OF EXCESS L-HISTIDINE DIET ON ACCUMULATION OF L-HISTIDINE IN ISOLATED RAT SMALL INTESTINE
- FORMATION OF 4-RIBITYLAMINO-5-AMINO-2, 6-DIHYDROXYPYRIMIDINE IN AN ADENINE-RIBOFLAVIN DOUBLELESS MUTANT OF BACILLUS SUBTILIS
- THE RELATION BETWEEN PURINE METABOLISM AND FLAVINOGENESIS IN EREMOTHECIUM ASHBYII : THE IDENTIFICATION OF S-ADENOSYLMETHIONINE AND S-ADENOSYLHOMOCYSTEINE ACCUMULATED IN NON-GROWING CELLS OF E. ASHBYII
- THE IMMEDIATE NUCLEOTIDE PRECURSOR, GUANOSINE TRIPHOSPHATE, IN THE RIBOFLAVIN BIOSYNTHETIC PATHWAY
- STUDIES ON THE INTERMEDIATES IN THE BIO-SYNTHETIC PATHWAY OF RIBOFLAVIN : I. IDENTIFICATION OF A GREEN FLUORESCENT COMPOUND, COMPOUND G1, ACCUMULATED IN NON-GROWING CELLS OF EREMOTHECIUM ASHBYII BY THE ADDITION OF DIMERIC DIACETYLI
- REUTILIZATION OF BY-PRODUCT FOR RIBOFLAVIN FORMATION IN THE RIBOFLAVIN SYNTHETASE REACTION
- NUCLEOTIDE PRECURSOR IN RIBOFLAVIN BIOSYNTHESIS
- IDENTIFICATION OF THE SECOND PRODUCT OF THE RIBOFLAVIN SYNTHETASE REACTION
- EFFECTS OF 8-AZAGUANINE ON RIBOFLAVIN PRODUCTION AND ON THE NUCLEOTIDE POOLS IN NON-GROWING CELLS OF EREMOTHECIUM ASHBYII
- STUDIES ON ENZYMIC FORMATION OF 5-O-(α-D-GLUCOPYRANOSYL)-4-PYRIDOXIC ACID IN RAT
- Multiplicity of Acid Phosphatase Catalyzing FMN Hydrolysis in Spinach Leaves
- An extreme diminution in the strong affinty of 2-amino-4-hydroxy-6-formylpteridene for xanthine oxidase by reduction of a 7,8-double bond or a formyl group at position 6 of its pyrazine ring.
- Guanosine nucleotide precursor for flavinogenesis of Eremothecium ashbyii.
- FLUCTUATION OF THE NUCLEOTIDE POOLS OF FLAVINOGENIC AND NONFLAVINOGENIC STRAINS OF EREMOTHECIUM ASHBYII GROWN IN THE PRESENCE OF PURINES
- Isolation of 4-ribitylamino-5-amino-2,6-dihydroxypyrimidine from a high flavinogenic mold Eremothecium ashbyii.
- Mechanism and regulation of thiamine pyrophosphokinase from parsely leaf.
- BIOCHEMICAL STUDIES ON PTERIDINES IN PLANTS:II. BIOGENESIS OF FOLIC ACID IN GREEN LEAVES: ENZYMATIC SYNTHESIS OF DIHYDROPTEROIC ACID FROM GUANOSINE COMPOUNDS AND MECHANISM OF ITS SYNTHETIC PATHWAY
- Development of Specific Experimental Systems for Flavinogenesis Using Non-Growing Cell of Eremothecium ashbyii
- Stimulatory Effects of Purines on Flavinogenesis by Non-Growing Cell of Eremothecium ashbyii
- Riboflavin-Indoles Interaction in Acid Solution
- THE STRUCTURE OF 2-AMINO-4-HYDROXY-6-SUBSTI-TUTED-DIHYDROPTERIDINE DERIVATIVES PREPARED BY REDUCTION WITH HYDROSULFITE
- Biochemical Studies on Pteridines in Plants:III. Biogenesis of Folic Acid in Green Leaves; Inhibitors Acting on the Biosynthetic Pathway for the Formation of Dihydropteroic Acid from Guanylic Acid
- Catalytic properties of riboflavin synthetase from a high-riboflavinogenic Eremothecium ashbyii.
- Biogenesis of Riboflavin in Green Leaves:VII. Isolation and Characterization of Spinach Riboflavin Synthetase
- Biosynthesis of Thiamine in Plants:II. Biosynthetic Pathway of Thiamine Monophosphate from Pyrimidine and Thiazole Moieties
- UTILIZATION OF PYRIMHMNE MOIETY IN VIVO FOR THE BIOGENSIS OF THIAMINE IN PLANT
- On the Enzymatic Hydrolysis of FAD in Spinach Leaves
- Biosynthesis of Thiamine in Plants:I. Enzymic Formation of Thiamine from Pyrimidine and Thiazole Moieties
- Enzymic formation of thiamine pyrophosphate in plants.
- Purification and properties of thiamine pyrophosphokinase from parsely leaf.
- STUDIES ON PLANT FLAVOKINASE:II. THE PURIFICATION AND SOME PROPERTIES OF BEAN FLAVOKINASE
- STUDIES ON PLANT FLAVOKINASE:I. OCCURRENCE OF FLAVOKINASE IN GREEN LEAVES
- LEVELS OF ENZYMES FOR BIOSYNTHESIS AND DEGRADATION OF FLAVINS IN SPINACHS
- BIOGENESIS OF RIBOFLAVIN IN GREEN LEAVES:VI. NON-ENZYMATIC PRODUCTION OF 6-METHYL-7-HYDROXY-8-RIBITYLLUMAZINE FROM NEW ORGANIC REACTION OF 6, 7-DIMETHYL-8-RIBITYLLUMAZINE WITH p-QUINONE
- Effects of 8-Azaguanine, Chloramphenicol and 3-Amino-1, 2, 4-Triazole on Riboflavin Formation by Eremothecium Ashbyii
- Enzymatic Conversion of 2-Amino-4-hydroxy-6-formyl-7, 8-dihydropteridine to 2-Amino-4-hydroxy-6-hydroxymethyl-7, 8-dihydropteridine by Cell-free Extracts of Escherichia coli B
- Effects of 2-Amino-4-hydroxy-6-carboxy-7, 8-dihydropteridine and 2-Amino-4-hydroxy-6-formyl-7, 8-dihydropteridine on Growth of Escherichia coli
- BIOGENESIS OF RIBOFLAVIN IN GREEN LEAVES:V. ABSENCE OF THE EFFECT OF CYSTEINE AND ASCORBIC ACID ON THE ENZYMATIC CONVERSION OF 6, 7-DIMETHYL-8-RIBITYLLUMAZINE TO RIBOFLAVIN UNDER ANAEROBIC CONDITION
- BIOCHEMICAL STUDIES ON PTERIDINES IN PLANTS:I. BIOGENESIS OF FOLIC ACID IN GREEN LEAVES: CONFIRMATION OF ENZYMATIC SYNTHESIS OF FOLATE COMPOUNDS BY THE ENZYME SYSTEM FROM THE SPINACH
- Reconstitution of Flavin-Adenine Dinucleotide in the Apoenzyme of Glucose Oxidase
- Preparation and Properties of Crystalline Riboflavin-Tryptophan Complex