Release from or through a Wax Matrix System. V. Applicability of the Square-Root Time Law Equation for Release from a Wax Matrix Tablet
スポンサーリンク
概要
- 論文の詳細を見る
To obtain basic and clear release properties, wax matrix tablets were prepared from a physical mixture of drug and wax powder at a fixed mixing ratio. Properties of release from the single flat-faced surface, curved side surface, and/or whole surface of the wax matrix tablet were examined. Then tortuosity and the applicability of Higuchi's square-root time law equation were examined. The Higuchi equation well analyzed the release processes of different release manners. However, the region fitted to the Higuchi equation differed with the release manner. Tortuosity obtained with release from the single flat-faced surface and curved side surface was comparable with that obtained with the release from a reservoir device tablet, whereas tortuosity obtained with release from the whole surface was larger. As the wax matrix tablets were prepared at a fixed mixing ratio, their internal structures should be similar. Therefore changes in the matrix volume or volume fraction with release were examined, and an extra volume where dissolved drug stray becomes large with release time in the case of release from the whole surface. These factors should be taken into account for evaluation of applicability and release properties. Furthermore, the entire release process should be analyzed using a combination of the square-root time law and other suitable equations in accordance with release manner or condition.
- 公益社団法人日本薬学会の論文
- 2003-08-01
著者
-
YONEZAWA Yorinobu
Faculty of Pharmacy, Meijo University
-
Ishida S
Faculty Of Pharmacy Meijo University
-
ISHIDA Sumio
Faculty of Pharmacy, Meijo University
-
Yonezawa Y
Faculty Of Pharmacy Meijo University
-
Yonezawa Yorinobu
Faculty Of Pharmaceutical Sciences Meijio University
-
Sunada H
Faculty Of Pharmacy Meijo University
-
Sunada Hisakazu
Fac. Of Pharmacy Meijo Univ.
-
Sunada Hisakazu
Faculty Of Pharmacy Meijo University
関連論文
- Preparation of Rapidly Disintegrating Tablets Containing Itraconazole Solid Dispersions
- Rapidly Disintegrating Tablets Prepared by a Surface-Modifying Method : Comparison of Disintegrants
- Effect of Several Cellulosic Binders on Particle Size Distribution of Granules Prepared by a High-Speed Mixer
- Preparation and Evaluation of Solid Dispersions of Nitrendipine Prepared with Fine Silica Particles Using the Melt-Mixing Method
- Preparation and Evaluation of Solid Dispersion for Nitrendipine-Carbopol and Nitrendipine-HPMCP Systems Using a Twin Screw Extruder
- Evaluation of Bitterness Suppression of Macrolide Dry Syrups by Jellies
- Preparation and Evaluation of a Compressed Tablet Rapidly Disintegrating in the Oral Cavity
- Analysis of the Release Process of Phenylpropanolamine Hydrochloride from Ethylcellulose Matrix Granules V. : Release Properties of Ethylcellulose Layered Matrix Granules
- Analysis of the Release Process of Phenylpropanolamine Hydrochloride from Ethylcellulose Matrix Granules IV. Evaluation of the Controlled Release Properties for in Vivo and in Vitro Release Systems
- Analysis of the Release Process of Phenylpropanolamine Hydrochloride from Ethylcellulose Matrix Granules III. Effects of the Dissolution Condition on the Release Process
- Analysis of the Release Process of Phenylropanolamine Hydrochloride from Ethylcellulose Matrix Granules II. Effects of the Binder Solution on the Release Process
- Analysis of the Release Process of Phenylpropanolamine Hydrochloride from Ethylcellulose Matrix Granules
- 3a-E-2 大型2次元高効率中性子偏極度計の300MeVにおける較正
- Preparation of Solid Dispersion for Ethenzamide-Carbopol and Theophylline-Carbopol Systems Using a Twin Screw Extruder
- Improvement of the Dissolution Rate of Nitrendipine Using a New Pulse Combustion Drying Method
- Effect of Several Cellulosic Binders and Method of Their Addition on the Properties and Binder Distribution of Granules Prepared in an Agitating Fluidized Bed
- Effect of Process Variables on the Properties and Binder Distribution of Granules Prepared by a High-Speed Mixer
- Preparation and Evaluation of Combination Tablet Containing Incompatible Active Ingredients
- ENHANCEMENT OF LYMPHATIC TRANSPORT OF 1-(2-TETRAHYDROFURYL)-5-FLUOROURACIL BY POLYACRYLIC ACID AQUEOUS GEL AND EMULSION TYPE SUPPOSITORIES IN RATS
- Release from or through a Wax Matrix System. IV. Generalized Expression of the Release Process for a Reservoir Device Tablet
- Release from or through a Wax Matrix System. III. Basic Properties of Release through the Wax Matrix Layer
- Release from or through a Wax Matrix System. II.^ Basic Properties of Release from or through the Wax Matrix Layer
- Dissolution of Solid Dosage Form. VII. Effect of Shape on the Dissolution of Nondisintegrating Single Component Tablet under Non-sink Condition
- Sustained-Release Progesterone Vaginal Suppositories 1 : Development of Sustained-Release Granule(Biopharmacy)
- Influence of Physicochemical Properties on Drug Release Rate from Hydroxypropylmethylcellulose Matrix Tablets
- Influence of Water-Soluble Polymers on the Dissolution of Nifedipine Solid Dispersions with Combined Carriers
- Preparation and Evaluation of Ibuprofen Solid Dispersion Systems with Kollidon Particles Using a Pulse Combustion Dryer System
- Some Factors Influencing the Dissolution of Solid Dispersions with Nicotinamide and Hydroxypropylmethylcellulose as Combined Carriers
- Effect of Process Variables on the Properties and Binder Distribution of Granules Prepared in a Fluidized Bed
- Release from or through a Wax Matrix System VI. : Analysis and Prediction of the Entire Release Process of the Wax Matrix Tablet
- Release from or through a Wax Matrix System. V. Applicability of the Square-Root Time Law Equation for Release from a Wax Matrix Tablet
- Release from or through a Wax Matrix System.I. Basic Release Properties of the Wax Matrix System
- Mechanistic Studies on Hydrotropic Solubilization of Nifedipine in Nicotinamide Solution
- Indomethacin Controlled Release Matrix Tablet Prepared by Wet Granulation Procedure
- Comparison of Nicotinamide, Ethylurea and Polyethylene Glycol as Carriers for Nifedipine Solid Dispersion Systems