Preparation and Evaluation of Ibuprofen Solid Dispersion Systems with Kollidon Particles Using a Pulse Combustion Dryer System
スポンサーリンク
概要
- 論文の詳細を見る
Solid dispersions (SDs) of ibuprofen (IBU) were prepared with four carriers : Kollidon 25, Kollidon 30, Kollidon VA64, and Kollidon CL, using a newly developed pulse combustion dryer system, HYPULCON. Physicochemical properties of the SDs obtained were investigated by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), scanning electron microscope (SEM), and Fourier transformation IR spectroscopy (FT-IR). Powder X-ray diffraction (PXRD) showed that the crystal diffraction peaks of IBU in SDs disappeared completely, and in differential scanning calorimetry (DSC) curves, the endothermic peaks of IBU in SDs were not observed. Fourier transformation IR spectroscopy (FT-IR) proved that interactions between the drug and carrier existed. These findings demonstrated that IBU changed to an amorphous form in the SDs with the four carriers using the pulse combustion dryer system. The dissolution property of IBU in the SDs was markedly enhanced. The dissolution test showed that after 5min of dissolution, the concentrations of IBU in the SDs with Kollidon CL as the carrier was 43.81μg/ml, corresponding to 13.0 times that of pure IBU. So, it is demonstrated that the pulse combustion dryer system is very useful for preparing SDs of IBU with Kollidon of different grades as carriers
- 公益社団法人日本薬学会の論文
- 2007-11-01
著者
-
Xu Lu
School Of Pharmacy Shenyang Pharmaceutical University
-
Sunada Hisakazu
Faculty Of Pharmacy Meijo University
-
LI San
School of Pharmacy, Shenyang Pharmaceutical University
-
Li San
School Of Pharmacy Shenyang Pharmaceutical University
関連論文
- Preparation of Rapidly Disintegrating Tablets Containing Itraconazole Solid Dispersions
- Rapidly Disintegrating Tablets Prepared by a Surface-Modifying Method : Comparison of Disintegrants
- Preparation and Evaluation of Solid Dispersions of Nitrendipine Prepared with Fine Silica Particles Using the Melt-Mixing Method
- Preparation and Evaluation of Solid Dispersion for Nitrendipine-Carbopol and Nitrendipine-HPMCP Systems Using a Twin Screw Extruder
- Evaluation of Bitterness Suppression of Macrolide Dry Syrups by Jellies
- Preparation and Evaluation of a Compressed Tablet Rapidly Disintegrating in the Oral Cavity
- Analysis of the Release Process of Phenylpropanolamine Hydrochloride from Ethylcellulose Matrix Granules V. : Release Properties of Ethylcellulose Layered Matrix Granules
- Analysis of the Release Process of Phenylpropanolamine Hydrochloride from Ethylcellulose Matrix Granules IV. Evaluation of the Controlled Release Properties for in Vivo and in Vitro Release Systems
- Analysis of the Release Process of Phenylpropanolamine Hydrochloride from Ethylcellulose Matrix Granules III. Effects of the Dissolution Condition on the Release Process
- Analysis of the Release Process of Phenylropanolamine Hydrochloride from Ethylcellulose Matrix Granules II. Effects of the Binder Solution on the Release Process
- Analysis of the Release Process of Phenylpropanolamine Hydrochloride from Ethylcellulose Matrix Granules
- Preparation of Solid Dispersion for Ethenzamide-Carbopol and Theophylline-Carbopol Systems Using a Twin Screw Extruder
- Improvement of the Dissolution Rate of Nitrendipine Using a New Pulse Combustion Drying Method
- Effect of Several Cellulosic Binders and Method of Their Addition on the Properties and Binder Distribution of Granules Prepared in an Agitating Fluidized Bed
- Effect of Process Variables on the Properties and Binder Distribution of Granules Prepared by a High-Speed Mixer
- Preparation and Evaluation of Combination Tablet Containing Incompatible Active Ingredients
- Cloud point extraction-HPLC method for determination and pharmacokinetic study of flurbiprofen in rat plasma after oral and transdermal administration
- Release from or through a Wax Matrix System. IV. Generalized Expression of the Release Process for a Reservoir Device Tablet
- Release from or through a Wax Matrix System. III. Basic Properties of Release through the Wax Matrix Layer
- Release from or through a Wax Matrix System. II.^ Basic Properties of Release from or through the Wax Matrix Layer
- Dissolution of Solid Dosage Form. VII. Effect of Shape on the Dissolution of Nondisintegrating Single Component Tablet under Non-sink Condition
- Sustained-Release Progesterone Vaginal Suppositories 1 : Development of Sustained-Release Granule(Biopharmacy)
- Influence of Physicochemical Properties on Drug Release Rate from Hydroxypropylmethylcellulose Matrix Tablets
- Influence of Water-Soluble Polymers on the Dissolution of Nifedipine Solid Dispersions with Combined Carriers
- Preparation and Evaluation of Ibuprofen Solid Dispersion Systems with Kollidon Particles Using a Pulse Combustion Dryer System
- Some Factors Influencing the Dissolution of Solid Dispersions with Nicotinamide and Hydroxypropylmethylcellulose as Combined Carriers
- Effect of Process Variables on the Properties and Binder Distribution of Granules Prepared in a Fluidized Bed
- Release from or through a Wax Matrix System VI. : Analysis and Prediction of the Entire Release Process of the Wax Matrix Tablet
- Release from or through a Wax Matrix System. V. Applicability of the Square-Root Time Law Equation for Release from a Wax Matrix Tablet
- Release from or through a Wax Matrix System.I. Basic Release Properties of the Wax Matrix System
- Mechanistic Studies on Hydrotropic Solubilization of Nifedipine in Nicotinamide Solution
- Indomethacin Controlled Release Matrix Tablet Prepared by Wet Granulation Procedure
- Comparison of Nicotinamide, Ethylurea and Polyethylene Glycol as Carriers for Nifedipine Solid Dispersion Systems