Multiple-Valued Programmable Logic Array Based on a Resonant-Tunneling Diode Model
スポンサーリンク
概要
- 論文の詳細を見る
Toward the age of ultra-high-density digital ULSI systems, the development of new integrated circuits suitable for an ultimately fine geometry feature size will be an important issue. Resonant-tunneling (RT) diodes and transistors based on quantum effects in deep submicron geometry are such kinds of key devices in the next-generation ULSI systems. From this point of view, there has been considerable interests in RT diodes and transistors as functional devices for circuit applications. Especially, it has been recognized that RT functional devices with multiple peaks in the current-voltage (I-V) characteristic are inherently suitable for implementing multiple-valued circuits such as a multiple-state memory cell. However, very few types of the other multiple-valued logic circuits have been reported so far using RT devices. In this paper, a new multiple-valued programmable logic array (MVPLA) based on RT devices is proposed for the next-generation ULSI-oriented hardware implementation. The proposed MVPLA consists of 3 basic building blocks: a universal literal circuit, an AND circuit and a linear summation circuit. The universal literal circuit can be directly designed by the combination of the RT diodes with one peak in the I-V characteristic, which is programmable by adjusting the width of quantum well in each RT device. The other basic building blocks can be also designed easily using the wired logic or current-mode wired summation. As a result, a high-density RT-diode-based MVPLA superior to the corresponding binary implementation can be realized. The device-model-based design method proposed in this paper is discussed using static characteristics of typical RT diode models.
- 社団法人電子情報通信学会の論文
- 1993-07-25
著者
-
Kameyama Michitaka
Graduate School of Information Sciences, Tohoku University
-
Hanyu Takahiro
Graduate School of Information Sciences, Tohoku University
-
Yabe Y
Nec Corp. Sagamihara‐shi Jpn
-
Hanyu Takahiro
Graduate School Of Information Sciences Tohoku University
-
Hanyu Takahiro
Graduate School Of Information Sciences:faculty Of Engineering Tohoku University
-
Kameyama Michitaka
Graduate School Of Information Science Tohoku University
-
Yabe Yoshikazu
Graduate School of Information Sciences, Tohoku University
関連論文
- Network coding-based reliable multicast scheme in wireless networks (無線通信システム)
- Adaptive Group-Based Job Scheduling for High Performance and Reliable Volunteer Computing
- Design and Evaluation of Fine-Grain Field-Programmable VLSI Based on Multiple-Valued Source-Coupled Logic
- FPGA Implementation of a Stereo Matching Processor Based on Window-Parallel-and-Pixel-Parallel Architecture(VLSI Architecture, VLSI Design and CAD Algorithms)
- Architecture of a Stereo Matching VLSI Processor Based on Hierarchically Parallel Memory Access(Digital Circuits and Computer Arithmetic, Recent Advances in Circuits and Systems-Part 1)
- C-12-8 Design of a Very Compact Cell for a Multiple-Valued Fine-Grain Reconfigurable VLSI
- Low-Power 8-Valued Cellular Array VLSI for High-Speed Image Processing (Special Issue on Super Chip for Intelligent Integrated Systems)
- Group Testing Based Detection of Web Service DDoS Attackers
- A Multi-Context FPGA Using Floating-Gate-MOS Functional Pass-Gates(Novel Device Architectures and System Integration Technologies)
- Architecture of a Fine-Grain Field-Programmable VLSI Based on Multiple-Valued Source-Coupled Logic(New System Paradigms for Integrated Electronics)
- Design of Highly Parallel Linear Digital System for ULSI Processors (Special Issue on New Architecture LSIs)
- A High-Density Multiple-Valued Content-Addressable Memory Based on One Transistor Cell (Special Issue on LSI Memories)
- Code Assignment Algorithm for Highly Parallel Multiple-Valued Combinational Circuits Based on Partition Theory (Special Issue on Multiple-Valued Logic)
- Advanced VLSI Architecture for Intelligent Integrated Systems(Plenary Session,AWAD2006)
- Advanced VLSI Architecture for Intelligent Integrated Systems(Plenary Session,AWAD2006)
- Design of a Trinocular-Stereo-Vision VLSI Processor Based on Optimal Scheduling
- Minimizing Energy Consumption Based on Dual-Supply-Voltage Assignment and Interconnection Simplification(Novel Device Architectures and System Integration Technologies)
- Low-Power Field-Programmable VLSI Using Multiple Supply Voltages(Low Power Methodology, VLSI Design and CAD Algorithms)
- C-12-4 Low Power Field Programmable VLSI Processor Using Multiple Supply Voltages
- Field-Programmable VLSI Based on a Bit-Serial Fine-Grain Architecture(New System Paradigms for Integrated Electronics)
- Architecture of a high-performance stereo vision VLSI processor
- A VLSI-Oriented Model-Based Robot Vision Processor for 3-D Instrumentation and Object Recognition (Special Issue on Super Chip for Intelligent Integrated Systems)
- Generalized Hough Transform VLSI Processor for Model-Based Edge Detection
- Fine-Grain Multiple-Valued Reconfigurable VLSI Using Series-Gating Differential-Pair Circuits and Its Evaluation
- Implementation of a Partially Reconfigurable Multi-Context FPGA Based on Asynchronous Architecture
- Memory Allocation for Multi-Resolution Image Processing
- Evaluation of a Field-Programmable VLSI Based on an Asynchronous Bit-Serial Architecture
- Design of a Reconfigurable Parallel Processor for Digital Control Using FPGAs (Special Issue on Super Chip for Intelligent Integrated Systems)
- Special Section on VLSI Technology toward Frontiers of New Market
- A Minimum-Latency Linear Array FFT Processor for Robotics
- Pixel-Serial and Window-Parallel VLSI Processor for Stereo Matching Using a Variable Window Size
- Multiple-Valued Code Assignment Algorithm for VLSI-Oriented Highly Parallel K-Ary Operation Circuits (Special Issue on New Architecture LSIs)
- Multiple-Valued Programmable Logic Array Based on a Resonant-Tunneling Diode Model
- Design of a CAM-Based Collision Detection VLSI Processor for Robotics (Special Issue on Super Chip for Intelligent Integrated Systems)
- A Collision Detection Processor for Intelligent Vehicles (Special Issue on ASICs for Automotive Electronics)
- Design Methodology for Human-Oriented Intelligent Integrated Systems
- Design and Evaluation of a 4-Valued Universal-Literal CAM for Cellular Logic Image Processing (Special Issue on New Concept Device and Novel Architecture LSIs)
- Adaptive Group-Based Job Scheduling for High Performance and Reliable Volunteer Computing
- An Asynchronous FPGA Based on LEDR/4-Phase-Dual-Rail Hybrid Architecture
- A Switch Block Architecture for Multi-Context FPGAs Based on a Ferroelectric-Capacitor Functional Pass-Gate Using Multiple/Binary Valued Hybrid Signals
- Memory Allocation for Window-Based Image Processing on Multiple Memory Modules with Simple Addressing Functions
- Task Allocation with Algorithm Transformation for Reducing Data-Transfer Bottlenecks in Heterogeneous Multi-Core Processors : A Case Study of HOG Descriptor Computation
- Logic-In-Control-Architecture-Based Reconfigurable VLSI Using Multiple-Valued Differential-Pair Circuits
- FOREWORD
- Code Assignment Algorithm for Highly Parallel Multiple-Valued k-Ary Operation Circuits Using Partition Thory
- Design of a Rule-Based Highly-Safe Intelligent Vehicle Using a Content-Addressable Memory
- Implementation of a Low-Power FPGA Based on Synchronous/Asynchronous Hybrid Architecture
- Memory-Access-Driven Context Partitioning for Window-Based Image Processing on Heterogeneous Multicore Processors
- Acceleration of Block Matching on a Low-Power Heterogeneous Multi-Core Processor Based on DTU Data-Transfer with Data Re-Allocation
- Machine Learning Based Adaptive Contour Detection Using Algorithm Selection and Image Splitting
- A Multiple-Valued Reconfigurable VLSI Architecture Using Binary-Controlled Differential-Pair Circuits
- Platform and Mapping Methodology for Heterogeneous Multicore Processors
- Evaluation of an FPGA-Based Heterogeneous Multicore Platform with SIMD/MIMD Custom Accelerators
- Machine Learning Based Adaptive Contour Detection Using Algorithm Selection and Image Splitting ( Fundamental Aspects and Recent Developments in Multimedia and VLSI Systems)
- Platform and Mapping Methodology for Heterogeneous Multicore Processors ( Fundamental Aspects and Recent Developments in Multimedia and VLSI Systems)
- Multiple-Valued Fine-Grain Reconfigurable VLSI Using a Global Tree Local X-Net Network