Tight-Binding Quantum Chemical Molecular Dynamics Study on Depth Profile Prediction in Low Energy Boron Implantation Process
スポンサーリンク
概要
- 論文の詳細を見る
Creation of shallow junction for the future generation LSI is a crucial step in semiconductor industry and low-energy boron implantation process is considered to be a key technology. In this study, we have statistically investigated the effects of orientation of implantation on the dynamic behavior of boron implantation process into hydrogen-terminated Si(001) $2\times 1$ surface by using our original tight-binding quantum chemical molecular dynamics method, which is over 5,000 times faster than conventional first-principle molecular dynamics method. It was found that depth profile of boron implantation can be controlled by orientation of boron implantation and the shallowest implantation depth was obtained in the case of tilt angle equal to 7° among the investigated tilt angles of 0°, 7°, 15°, 22.5°, 30° and 45° at the initial boron energy of 100 eV. At the boron implantation process of over 1 keV energy the tilt angle of 7° has been employed experimentally and the same tilt angle was predicted to be the best even at low-energy region of 100 eV. Furthermore, we investigated the effect of rotation angle on the depth profile and at all the investigated tilt angles the average implantation depth becomes shallower for rotation angle of 45° that is along $\langle 011\rangle$ direction, than for rotation angle of 0° that is along $\langle 001\rangle$. Hence, the shallowest depth profile was obtained in the case of tilt angle of 7° and rotation angle of 45°, where the distribution of intruded boron atom was more concentrated than for the same tilt angle but rotation angle of 0°. The effect of tilt and rotation angles on the boron implantation process has not been clarified experimentally at low-energy boron implantation process of less than 1 keV and hence we concluded that theoretical optimization of low-energy boron implantation process has been succeeded by means of our original tight-binding quantum chemical molecular dynamics method.
- Published by the Japan Society of Applied Physics through the Institute of Pure and Applied Physicsの論文
- 2005-04-15
著者
-
Kubo Momoji
Department Of Applied Chemistry Graduate School Of Engineering Tohoku University
-
TSUBOI Hideyuki
New Industry Creation Hatchery Center, Tohoku University
-
Sasata Katsumi
Department Of Applied Chemistry Graduate School Of Engineering Tohoku University
-
Broclawik Ewa
New Industry Creation Hatchery Center Tohoku University
-
Koyama Michihisa
Department Of Applied Chemistry Graduate School Of Engineering Tohoku University
-
Masuda Tsuyoshi
Department Of Applied Chemistry Tohoku University
-
Yabuhara Hidehiko
Corporate Manufacturing Engineering Center Toshiba Corporation
-
Iga Hideki
Department Of Applied Chemistry Graduate School Of Engineering Tohoku University
-
Sagawa Ai
Department Of Applied Chemistry Graduate School Of Engineering Tohoku University
-
Miyamoto Akira
New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
-
Miyamoto Akira
New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
-
Sasata Katsumi
Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
-
Broclawik Ewa
New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
-
Iga Hideki
Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
-
Masuda Tsuyoshi
Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
-
Kubo Momoji
Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
関連論文
- Theoretic Study of Electronic and Electrical Properties for Nano-Structural ZnO
- Adsorption Properties of CH_3OH on Al(111) and Fe(100) Surfaces : A Periodic First-Principles Investigation
- Quantum chemical investigation of excited state and photo-induced catalysis (第93回触媒討論会B講演予稿 テーマ「グリーンケミストリー」)
- Tight-Binding Quantum Chemical Molecular Dynamics Study on Interfacial Electron Transfer in Dye-Sensitized Anatase (001) Surface
- Development of Multi-Scale Electrical Conductivity Simulator with the Joule Heating Module and its Application to Polycrystalline SiO_2
- Influence of Chemical Topology on the Electrical Properties of Carbon Black-A Theoretical Study
- Development of a Seebeck Coefficient Prediction Simulator Using Tight-Binding Quantum Chemical Molecular Dynamics
- Development of the multi-scale simulator for the dye-sensitized TiO_2 nanoporous electrode based on quantum chemical calculation
- A Theoretical Approach for Developing New p-Type Transparent Conducting Metal Oxide
- Theoretical Study on the Photophyscial Properties of an Efficient Sensitizer for Nanocrystalline TiO_2-Based Solar Cells
- Development of A Combined Thermal Conductivity Prediction Simulator Including Conduction Electron and Lattice Vibration Effects
- Theoretical Study on the Electronic and Structural Properties of p-Type Transparent Conducting Metal Oxides
- Development of Accelerated Large-Scale Electronic Structure Calculation Program for Designing of Rare Earth Phosphors
- A Theoretical Study of the Effect of Eu ion Dopant on the Electronic Excitations of Yttrium Oxide and Yttrium Oxy-Sulphide
- Study on the Role of Oxygen Vacancies of Indium Tin Oxide by Density Functional Theory and Accelerated Quantum Chemical Molecular Dynamics Method
- A Theoretical Study on Influence of Oxygen Vacancies on the Electronic Properties of Indium Oxide and Indium Tin Oxide
- A Theoretical Study : Effect of Eu and Er ion Dopant on the Electronic Excitations of Yttrium Oxide and Yttrium Oxy-Sulphide
- Tight-Binding Quantum Chemical Calculations of Electronic Structures of Indium Tin Oxide
- Accelerated Quantum Chemical Molecular Dynamics Study on the Properties of Organic Light-Emitting Diodes
- Theoretical characterization of ground and low lying excited state of poly(3,4-ethylenedioxythiophene) and poly(4-styrenesulfonate)
- Theoretical Investigation of the Electronic Properties of PEDOT : PSS Conducting Polymer on Indium Tin Dioxide (ITO) Surface : an Accelerated Quantum Chemical Molecular Dynamics Method
- Molecular Dynamics and Quantum Chemical Molecular Dynamics Approach to Design of MgO Protecting Layer in Plasma Display
- Theoretical Design of MgO Protecting Layer in Plasma Display by New Kinetic Monte Carlo Simulator
- Investigation of Hydrogen Chemisorption on GaAs(111)A Ga Surface by In Situ Monitoring and Ab Initio Calculation
- Computational Chemistry Study of Diamond-like Carbon : Functions and Structure Control by Frictional Force
- Theoretical Study on Electronic and Electrical Properties of Nano Structural ZnO
- Theoretical study on the electrical properties of conducting carbon based materials
- Dielectric Breakdown Simulation by Molecular Dynamics and Tight-Binding Quantum Chemistry Methods
- Development of New Calculation Method for Rare Earth Element and Large Scale Electronic Structure Calculation of Blue Phosphor BaMgAl_O_:Eu^
- Tight-Binding Molecular Dynamics Study of Hydrogen Molecule Inside Silicon Crystal
- Tight-binding Molecular Dynamics Simulation of Desorbed SiO Molecule during the Oxidation of Si(111) Surface
- Quantum Chemical Study on the Interaction of NF3 with Si
- Tight-Binding Molecular Dynamics Simulation of Desorbed SiO Molecule during the Oxidation of Si(111) Surface
- Atomic Control of Ultrafine Gold Particles on MgO(100) as Investigated by Molecular Dynamics and Computer Graphics
- Molecular Dynamics Simulations of Metal Clusters and Metal Deposition on Metal Surfaces
- Aluminum Reflow Behavior in Via-Hole Filling Investigated by Molecular Dynamics Simulation and Computer Graphics
- THE INFLUENCE OF ^B ADDITION ON THE SWELLING SUPPRESSION BY PHOSPHORUS AND TITANIUM IN Fe-Cr-Ni
- Structural Properties of Li_xMn_2O_4 as Investigated by Molecular Dynamics and Density Functional Theory
- Periodic Boundary Quantum Chemical Study on ZnO Ultra-Violet Laser Emitting Materials
- Periodic Boundary Quantum Chemical Study on ZnO Ultra-Violet Laser Emitting Materials
- Mechanism of Layer-by-Layer Homoepitaxial Growth of SrTiO_3 (100) as Investigated by Molecular Dynamics and Computer Graphics
- Development of New Kinetic Monte Carlo Simulator for Theoretical Design of MgO Protecting Layer in Plasma Display
- Theoretical Calculations on Electronic Structure and Catalytic Reaction of Organo-f-element Complexes
- Potential Energy Surface and Dynamics of Pd/MgO(001)System as Investigated by Periodic Density Functional Calculations and Classical Molecular Dynamics Simulations
- Investigation of Thermal Annealing Process of GaN Layer on Sapphire by Molecular Dynamics
- Investigation of Initial Growth Process of GaN Film on Sapphire Using Computational Chemistry
- Investigation of Growth Process of GaN Film on Sapphire by Computational Chemistry
- Computational Studies on GaN Surface Polarity and InN/GaN Heterostructures by Density Functional Theory and Molecular Dynamics
- Study on Surface Polarity of GaN by Density Functional Theory and Molecular Dynamics
- Atomistic Crystal Growth Process of Metal Oxide Electronics Materials : Theoretical Simulation Studies
- Quantum Chemical Calculations of Sulfur Doping Reactions in Diamond CVD
- Molecular Orbital Calculations of Sulfur Doping Reactions in Diamond CVD
- Computational Chemistry Study on Initial Stages of Nitridation of Silicon Surfaces
- Molecular Dynamics Simulations of Adhesional Forces via Hydrocarbon Films
- Nonlinear Susceptibility of Second Harmonic Generation Corresponded to the Diamond(100)Surface Structures
- Development of New Tight-Binding Molecular Dynamics Program to Simulate Chemical-Mechanical Polishing Processes
- Development of New Tight-Binding Molecular Dynamics Program to Simulate Chemical-Mechanical Polishing Processes
- Theoretical Simulation of Dielectric Breakdown by Molecular Dynamics and Tight-Binding Quantum Chemistry Methods
- Theoretical Investigation of Electrical and Electronic Properties of Carbon Materials
- Investigation of the Electrical and Electronic Properties of Semiconductor Oxide Gas Sensors by Tight-Binding Quantum Calculations
- Theoretical investigation on the electronic properties of conjugated double and triple bond linear carbon chains
- Computational Chemistry Study on Crystal Growth Process of InGaN/GaN
- Simulations of the Effects of Tip Apex Geometries on Atomic Force Microscopy Images
- Effects of Atomic Arrangement at Tip Apex and Tip-Sample Distance on Atomic Force Microscopy Images: A Simulation Study
- Molecular Adsorption on Ultrafine Precious Metal Particles Studied by Density Functional Calculation
- Influence of Organic Functional Groups on the Electrical Properties of Carbon Black: A Theoretical Study
- Development of Multiscale Simulator for Dye-Sensitized TiO2 Nanoporous Electrode Based on Quantum Chemical Calculation
- Simulation of Atomic Force Microscopy Image Variations along the Surface Normal:Presence of Possible Resolution Limit in the Attractive Force Range
- Theoretical Study on Electronic and Electrical Properties of Nanostructural ZnO
- Molecular Dynamics Studies of Surface Difference Effect on Gas Separation by Zeolite Membranes
- Excited State Study of Europium Oxide and Europium Sulphide using Quantum Chemical Method
- Theoretical Study on Fe-Based Metal Clusters: Application in Heterogeneous Catalysis
- Development of Hybrid Tight-Binding Quantum Chemical Molecular Dynamics Method and Its Application to Boron Implantation Process into Pre-amorphized Silicon Substrate
- Development of Electric Conductivity Simulator Based on Tight-Binding Quantum Chemical Molecular Dynamics
- Depth Profile Prediction on Low Energy Boron Implantation Process by Tight-Binding Quantum Chemical Molecular Dynamics
- Theoretical Study of Chemical Mechanical Polishing of SiO_2 Surface
- Quantum Chemical Molecular Dynamics Simulation of Boron Diffusion and Si Implantation into Silicon Surface
- Ab Initio Calculation of F Atom Desorption in Tungsten Chemical Vapor Deposition Process Using WF6 and H2
- Quantum Chemical Molecular Dynamics Simulation of the Plasma Etching Processes
- A Theoretical Study on the Realistic Low Concentration Doping in Silicon Semiconductors by Accelerated Quantum Chemical Molecular Dynamics Method
- Quantum Chemical Molecular Dynamics Studies on the Chemical Mechanical Polishing Process of Cu Surface
- A Theoretical Investigation on the Dynamic Behavior of Molybdenum Dithiocarbamate Molecule in the Engine Oil Phase
- Quantum Chemical Calculations of Sulfur Doping Reactions in Diamond CVD
- Large-Scale Electronic Structure Calculation on Blue Phosphor BaMgAl10O17:Eu2+ Using Tight-Binding Quantum Chemistry Method Implemented for Rare-Earth Elements
- Theoretical Simulation of Dielectric Breakdown by Molecular Dynamics and Tight-Binding Quantum Chemistry Methods
- Effect of Surface Termination on Superlow Friction of Diamond Film: A Theoretical Study
- Theoretical Investigation of the Photophysical Properties of Black Dye Sensitizer [(H3-tctpy)M(NCS)3]- ($\text{M} = \text{Fe}$, Ru, Os) in Dye Sensitized Solar Cells
- Theoretical Study on the Electronic and Electrical Properties of p-Type Transparent Conducting Metal Oxides
- Development of A Seebeck Coefficient Prediction Simulator Using Tight-Binding Quantum Chemical Molecular Dynamics
- Theoretical Investigation on Electrical and Electronic Properties of Carbon Materials
- Development of Constraint Algorithm for the Number of Electrons in Molecular Orbitals Consisting Mainly $4 f$ Atomic Orbitals of Rare-Earth Elements and Its Introduction to Tight-Binding Quantum Chemical Molecular Dynamics Method
- Tight-Binding Quantum Chemical Molecular Dynamics Study on Depth Profile Prediction in Low Energy Boron Implantation Process
- Tight-Binding Quantum Chemical Calculations of Electronic Structures of Indium Tin Oxide
- Development of Electrical Conductivity Estimation Method Based on Tight-Binding Quantum Chemical Molecular Dynamics Simulation
- Development of a Thermal Conductivity Prediction Simulators Based on the Effects of Electron Conduction and Lattice Vibration
- Development of Hybrid Tight-Binding Quantum Chemical Molecular Dynamics Method and Its Application to Boron Implantation into Preamorphized Silicon Substrate
- Computational Chemistry Study on Crystal Growth of InGaN/GaN
- Application of Reaction Time Accelerating Molecular Dynamic to Modeling of Metallocene-Catalyzed Ethylene/1-butene Copolymerization
- Molecular dynamics simulations for microscopic behavior of water molecules in the vicinity of zwitterionic self-assembled monolayers
- Development of New Tight-Binding Molecular Dynamics Program to Simulate Chemical-Mechanical Polishing Processes