A Study on Fully Digital Clock Data Recovery Utilizing Time to Digital Converter(<Special Section>Analog Circuits and Related SoC Integration Technologies)
スポンサーリンク
概要
- 論文の詳細を見る
Conventional clock and data recovery (CDR) using a phase locked loop (PLL) suffers from problems such as long lock time, low frequency acquisition and harmonic locking. Consequently, a CDR system using a time to digital converter (TDC) is proposed. The CDR consists of simple arithmetic calculation and a TDC, allowing a fully digital realization. In addition, utilizing a TDC also allows the CDR to have a very wide frequency acquisition range. However, deterministic jitter is caused with each sample, because the system's sampling time period is changing slightly at each data edge. The proposed system does not minimize jitter, but it tolerates small jitter. Therefore, the system offers a faster lock time and a smaller sampling error. This proposed system has been verified on system level in a Verilog-A environment. The proposed method achieves faster locking within just a few data bits. The peak to peak jitter of the recovered clock is 60ps and the RMS jitter of the recovered clock is 30ps, assuming that the TDC resolution is 10ps. In applications where a small jitter error can be tolerated, the proposed CDR offers the advantage of fast locking time and a small sampling error.
- 社団法人電子情報通信学会の論文
- 2007-06-01
著者
-
MATSUZAWA Akira
Department of Physical Electronics, Tokyo Institute of Technology
-
Chaivipas Win
Tokyo Inst. Of Technol. Tokyo Jpn
-
CHAIVIPAS Win
Department of Physical Electronics, Graduate School of Science and Engineering, Tokyo Institute of T
-
OH Philipus
Department of Physical Electronics, Tokyo Institute of Technology
-
Oh Philipus
Department Of Physical Electronics Tokyo Institute Of Technology
-
Chaivipas Win
Department Of Physical Electronics Graduate School Of Science And Engineering Tokyo Institute Of Tec
-
Matsuzawa Akira
Department Of Physical Electronics Tokyo Institute Of Technology
-
Matsuzawa Akira
Department Of Physical Electronics Graduate School Of Science And Engineering Tokyo Institute Of Technology
関連論文
- An 8-Bit 600-MSps Flash ADC Using Interpolating and Background Self-Calibrating Techniques
- Analysis of CMOS Transconductance Amplifiers for Sampling Mixers
- A Study on Fully Digital Clock Data Recovery Utilizing Time to Digital Converter(Analog Circuits and Related SoC Integration Technologies)
- A Multi-Stage 60GHz CMOS LNA Using Dual Noise-Matching Technique
- A De-Embedding Method Using Different-Length Transmission Lines for mm-Wave CMOS Device Modeling
- Evaluation of a Multi-Line De-Embedding Technique up to 110GHz for Millimeter-Wave CMOS Circuit Design
- Analysis of CMOS Transconductance Amplifiers for Sampling Mixers
- Spatial Sensitivity of Capacitors in Distributed Resonators and Its Application to Fine and Wide Frequency Tuning Digital Controlled Oscillators
- Analysis of Phase Noise Degradation Considering Switch Transistor Capacitances for CMOS Voltage Controlled Oscillators
- A Wide-Tunable LC-Based Voltage-Controlled Oscillator Using a Divide-by-N Injection-Locked Frequency Divider
- The Optimum Design Methodology of Low-Phase-Noise LC-VCO Using Multiple-Divide Technique
- An 8-Bit 600-MSps Flash ADC Using Interpolating and Background Self-Calibrating Techniques
- A Performance Model for the Design of Pipelined ADCs with Consideration of Overdrive Voltage and Slewing
- The Effects of Switch Resistances on Pipelined ADC Performances and the Optimization for the Settling Time(Analog Circuits and Related SoC Integration Technologies)
- Design Challenges of Analog-to-Digital Converters in Nanoscale CMOS(Analog and Communications,Low-Power, High-Speed LSIs and Related Technologies)
- Analysis and Design of Direct Reference Feed-Forward Compensation for Fast-Settling All-Digital Phase-Locked Loop(Analog and Communications,Low-Power, High-Speed LSIs and Related Technologies)
- Compensation techniques for integrated analog device issues
- Wiring technology for analog and mixed signal LSIs
- Mixed Signal SoC Era(Analog Circuit and Device Technologies)
- Measurement of Integrated PA-to-LNA Isolation on Si CMOS Chip
- A 14.3% PAE parallel class-A and AB 60GHz CMOS PA
- Tunable CMOS Power Amplifiers for Reconfigurable Transceivers
- Two-Stage Band-Selectable CMOS Power Amplifiers Using Inter-Stage Frequency Tuning
- A Dual-Conduction Class-C VCO for a Low Supply Voltage
- A 24 dB Gain 51-68 GHz Common Source Low Noise Amplifier Using Asymmetric-Layout Transistors
- Inter-Stage Tunable Notch Filter for a Multi-Band WCDMA Receiver
- A Wideband Common-Gate Low-Noise Amplifier Using Capacitive Feedback
- A 24dB Gain 51-68GHz Common Source Low Noise Amplifier Using Asymmetric-Layout Transistors
- An Analysis on a Dynamic Amplifier and Calibration Methods for a Pseudo-Differential Dynamic Comparator
- A 0.5-V, 0.05-to-3.2GHz LC-Based Clock Generator for Substituting Ring Oscillators under Low-Voltage Condition
- Evaluation of L-2L De-Embedding Method Considering Misalignment of Contact Position for Millimeter-Wave CMOS Circuit Design
- A 83-dB SFDR 10-MHz Bandwidth Continuous-Time Delta-Sigma Modulator Employing a One-Element-Shifting Dynamic Element Matching
- Design of Interpolated Pipeline ADC Using Low-Gain Open-Loop Amplifiers
- A 20GHz Push-Push Voltage-Controlled Oscillator Using Second-Harmonic Peaking Technique for a 60GHz Frequency Synthesizer
- A Low-Noise High-Dynamic Range Charge Sensitive Amplifier for Gas Particle Detector Pixel Readout LSIs
- A Study of Stability and Phase Noise of Tail Capacitive-Feedback VCOs
- Design of CMOS Low-Noise Analog Circuits for Particle Detector Pixel Readout LSIs
- A Time-Domain Architecture and Design Method of High Speed A-to-D Converters with Standard Cells
- Evaluation of L-2L De-Embedding Method Considering Misalignment of Contact Position for Millimeter-Wave CMOS Circuit Design
- Ultra-Low-Voltage Dynamic Amplifier
- A 12-bit Interpolated Pipeline ADC Using Body Voltage Controlled Amplifier
- C-12-32 A Current-Reuse Class-C VCO using Dynamic Start-up Circuits